Suppr超能文献

点突变导致小鼠出现同步后肢运动和融合的腰椎脊髓

Mice Display Synchronous Hindlimb Locomotion and a Ventrally Fused Lumbar Spinal Cord Caused by a Point Mutation in .

机构信息

Department of Neuroscience, Uppsala University, Uppsala 751 24, Sweden.

Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany.

出版信息

eNeuro. 2022 Mar 14;9(2). doi: 10.1523/ENEURO.0518-21.2022. Print 2022 Mar-Apr.

Abstract

Identifying the spinal circuits controlling locomotion is critical for unravelling the mechanisms controlling the production of gaits. Development of the circuits governing left-right coordination relies on axon guidance molecules such as ephrins and netrins. To date, no other class of proteins have been shown to play a role during this process. Here, we have analyzed mice, which walk with a characteristic hopping gait using their hindlimbs in synchrony. Fictive locomotion experiments suggest that a local defect in the ventral spinal cord contributes to the aberrant locomotor phenotype. mutant spinal cords had severe morphologic defects, including the absence of the ventral midline and a poorly defined border between white and gray matter. The mice represent the first model where, exclusively found in the lumbar domain, the left and right components of the central pattern generators (CPGs) are fused with a synchronous hindlimb gait as a functional consequence. These defects were associated with abnormal developmental processes, including a misplaced notochord and reduced induction of ventral progenitor domains. Whereas the underlying mutation in mice has been suggested to lie within the gene, other genes in close vicinity have been associated with gait defects. Mouse embryos carrying a CRISPR replicated point mutation within displayed an identical morphologic phenotype. Thus, our data suggest that the assembly of the lumbar CPG network is dependent on fully functional TTC26 protein.

摘要

鉴定控制运动的脊髓回路对于揭示控制步态产生的机制至关重要。控制左右协调的回路的发育依赖于轴突导向分子,如 Ephrins 和 Netrins。迄今为止,还没有其他类别的蛋白质被证明在这个过程中发挥作用。在这里,我们分析了 小鼠,它们用后腿同步跳跃行走。虚拟运动实验表明,腹侧脊髓的局部缺陷导致了异常的运动表型。 突变体脊髓有严重的形态缺陷,包括腹中线缺失和白质和灰质之间的边界不明确。 突变体代表了第一个模型,其中中央模式发生器 (CPG) 的左、右成分仅在腰椎域中融合,导致同步后肢步态作为功能后果。这些缺陷与异常发育过程有关,包括脊索位置错误和腹侧祖细胞域的诱导减少。虽然 小鼠中的潜在突变被认为位于 基因内,但附近的其他基因与步态缺陷有关。携带 CRISPR 复制点突变的 小鼠胚胎显示出相同的形态表型。因此,我们的数据表明,腰段 CPG 网络的组装依赖于完全功能的 TTC26 蛋白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b36d/8925726/4d358c0c8048/ENEURO.0518-21.2022_f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验