Suppr超能文献

基于金属纳米粒子负载纳米酶的比色传感器阵列用于蛋白质和口腔细菌的精确识别。

Metal-Nanoparticle-Supported Nanozyme-Based Colorimetric Sensor Array for Precise Identification of Proteins and Oral Bacteria.

机构信息

School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.

Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

出版信息

ACS Appl Mater Interfaces. 2022 Mar 9;14(9):11156-11166. doi: 10.1021/acsami.1c25036. Epub 2022 Feb 25.

Abstract

Convenient, precise, and high-throughput discrimination of multiple bioanalytes is of great significance for an early diagnosis of diseases. Array-based pattern recognition has proven to be a powerful tool to detect diverse analytes, but developing sensing elements featuring favorable surface diversity still remains a challenge. In this work, we presented a simple and facile method to prepare programmable metal-nanoparticle (NP)-supported nanozymes (MNNs) as artificial receptors for the accurate identification of multiple proteins and oral bacteria. The in situ reduction of metal NPs on hierarchical MoS on polypyrrole (PPy), which generated differential nonspecific interactions with bioanalytes, was envisaged as the encoder to break through the limited supply of the receptor's quantity. As a proof of concept, three metal NPs, i.e., Au, Ag, and Pd NPs, were taken as examples to deposit on PPy@MoS as colorimetric probes to construct a cross-reactive sensor array. Based on the principal component analysis (PCA), the proposed MNN sensor array could well discriminate 11 proteins with unique fingerprint-like patterns at a concentration of 250 nM and was sufficiently sensitive to determine individual proteins with a detection limit down to the nanomolar level. Remarkably, two highly similar hemoglobins from different species (hemoglobin and bovine hemoglobin) have been precisely identified. Additionally, five oral bacteria were also well separated from each other without cross-classification at the level of 10 CFU mL. Furthermore, the sensor array allowed effective discrimination of complex protein mixtures either at different molar ratios or with minor varying components. Most importantly, the blind samples, proteins in human serums, proteins in simulated body fluid environment, the heat-denatured proteins, and even clinical cancer samples all could be well distinguished by the sensor array, demonstrating the real-world applications in clinical diagnosis.

摘要

便捷、精确、高通量地区分多种生物分析物对于疾病的早期诊断具有重要意义。基于阵列的模式识别已被证明是一种强大的工具,可以检测多种分析物,但开发具有良好表面多样性的传感元件仍然是一个挑战。在这项工作中,我们提出了一种简单易行的方法来制备可编程金属纳米粒子(NP)负载的纳米酶(MNN)作为人工受体,用于准确识别多种蛋白质和口腔细菌。预计金属 NPs 在聚吡咯(PPy)上的分层 MoS 原位还原会产生与生物分析物的差异非特异性相互作用,作为突破受体数量有限供应的编码器。作为概念验证,我们选择了三种金属 NPs,即 Au、Ag 和 Pd NPs,作为示例,沉积在 PPy@MoS 上作为比色探针,以构建交叉反应传感器阵列。基于主成分分析(PCA),所提出的 MNN 传感器阵列可以很好地区分 11 种浓度为 250 nM 的蛋白质,具有独特的指纹样模式,并且足够灵敏,可以检测到单个蛋白质,检测限低至纳摩尔水平。值得注意的是,两种来自不同物种的高度相似的血红蛋白(血红蛋白和牛血红蛋白)已被精确识别。此外,五种口腔细菌也可以彼此很好地区分,没有交叉分类,在 10 CFU mL 的水平上。此外,该传感器阵列允许有效区分不同摩尔比或具有较小变化成分的复杂蛋白质混合物。最重要的是,该传感器阵列可以很好地区分盲样、人血清中的蛋白质、模拟体液环境中的蛋白质、热变性蛋白质,甚至临床癌症样本,证明了在临床诊断中的实际应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验