Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617, Taiwan.
Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
J Phys Chem A. 2022 Mar 10;126(9):1486-1495. doi: 10.1021/acs.jpca.1c10046. Epub 2022 Feb 25.
Structure determination is a longstanding bottleneck of carbohydrate research. Tandem mass spectrometry (MS/MS) is one of the most widely used methods for carbohydrate structure determination. However, the effectiveness of MS/MS depends on how the precursor structures are derived from the observed fragments. Understanding the dissociation mechanisms is crucial for MS/MS-based structure determination. Herein, we investigate the collision-induced dissociation mechanism of β-cellobiose and β-maltose sodium adducts using quantum chemical calculations and experimental measurements. Four dissociation channels are studied. Dehydration mainly occurs through the transfer of an H atom to O1 of the sugar at the reducing end, followed by a C1-O1 bond cleavage; cross-ring dissociation starts with a ring-opening reaction, which occurs through the transfer of an H atom from O1 to O5 of the sugar at the reducing end. These two dissociation channels are analogous to that of glucose monosaccharide. The third channel, generation of B and Y ions, occurs through the transfer of an H atom from O3 (cellobiose) or O2 (maltose) to O1 of the sugar at the nonreducing end, followed by a glycosidic bond cleavage. The fourth channel, C-Z fragmentation, has two mechanisms: (1) the transfer of an H atom from O3 or O2 to O4 of the sugar at the reducing end to generate C ions in the ring form and (2) the transfer of an H atom from O3 of the sugar at the reducing end to O5 of the sugar at the nonreducing end to produce C ions in the linear form. The results of calculations are supported by experimental collision-induced dissociation spectral measurements.
结构测定一直是碳水化合物研究的瓶颈。串联质谱(MS/MS)是碳水化合物结构测定最广泛使用的方法之一。然而,MS/MS 的有效性取决于如何从观察到的片段中推导出前体结构。了解解离机制对于基于 MS/MS 的结构测定至关重要。在此,我们使用量子化学计算和实验测量研究了β-纤维二糖和β-麦芽糖钠加合物的碰撞诱导解离机制。研究了四个解离通道。脱水主要通过将 H 原子从还原端的糖的 O1 转移到 O1 发生,随后 C1-O1 键断裂;跨环解离始于开环反应,该反应通过还原端的糖的 O1 上的 H 原子转移到 O5 发生。这两个解离通道类似于葡萄糖单糖。第三个通道,B 和 Y 离子的生成,通过从 O3(纤维二糖)或 O2(麦芽糖)转移 H 原子到非还原端的糖的 O1 发生,随后糖苷键断裂。第四个通道,C-Z 片段化,有两种机制:(1)从还原端的糖的 O3 或 O2 转移 H 原子到 O4 以生成环形式的 C 离子,(2)从还原端的糖的 O3 转移 H 原子到非还原端的糖的 O5 以产生线性形式的 C 离子。计算结果得到了实验碰撞诱导解离光谱测量的支持。