Suppr超能文献

用于单阶段少样本目标检测的解耦度量网络

Decoupled Metric Network for Single-Stage Few-Shot Object Detection.

作者信息

Lu Yue, Chen Xingyu, Wu Zhengxing, Yu Junzhi

出版信息

IEEE Trans Cybern. 2023 Jan;53(1):514-525. doi: 10.1109/TCYB.2022.3149825. Epub 2022 Dec 23.

Abstract

Within the last few years, great efforts have been made to study few-shot learning. Although general object detection is advancing at a rapid pace, few-shot detection remains a very challenging problem. In this work, we propose a novel decoupled metric network (DMNet) for single-stage few-shot object detection. We design a decoupled representation transformation (DRT) and an image-level distance metric learning (IDML) to solve the few-shot detection problem. The DRT can eliminate the adverse effect of handcrafted prior knowledge by predicting objectness and anchor shape. Meanwhile, to alleviate the problem of representation disagreement between classification and location (i.e., translational invariance versus translational variance), the DRT adopts a decoupled manner to generate adaptive representations so that the model is easier to learn from only a few training data. As for a few-shot classification in the detection task, we design an IDML tailored to enhance the generalization ability. This module can perform metric learning for the whole visual feature, so it can be more efficient than traditional DML due to the merit of parallel inference for multiobjects. Based on the DRT and IDML, our DMNet efficiently realizes a novel paradigm for few-shot detection, called single-stage metric detection. Experiments are conducted on the PASCAL VOC dataset and the MS COCO dataset. As a result, our method achieves state-of-the-art performance in few-shot object detection. The codes are available at https://github.com/yrqs/DMNet.

摘要

在过去几年中,人们为研究少样本学习付出了巨大努力。尽管通用目标检测正在迅速发展,但少样本检测仍然是一个极具挑战性的问题。在这项工作中,我们提出了一种用于单阶段少样本目标检测的新型解耦度量网络(DMNet)。我们设计了一种解耦表示变换(DRT)和一种图像级距离度量学习(IDML)来解决少样本检测问题。DRT可以通过预测目标性和锚框形状来消除手工制作的先验知识的不利影响。同时,为了缓解分类和定位之间表示不一致的问题(即平移不变性与平移方差),DRT采用解耦方式生成自适应表示,以便模型更容易从仅少量训练数据中学习。至于检测任务中的少样本分类,我们设计了一种专门用于增强泛化能力的IDML。该模块可以对整个视觉特征进行度量学习,因此由于对多目标进行并行推理的优点,它比传统的DML更高效。基于DRT和IDML,我们的DMNet有效地实现了一种用于少样本检测的新范式,称为单阶段度量检测。我们在PASCAL VOC数据集和MS COCO数据集上进行了实验。结果,我们的方法在少样本目标检测中取得了领先的性能。代码可在https://github.com/yrqs/DMNet获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验