Suppr超能文献

ECEA:用于少样本目标检测的可扩展共存注意力机制

ECEA: Extensible Co-Existing Attention for Few-Shot Object Detection.

作者信息

Xin Zhimeng, Wu Tianxu, Chen Shiming, Zou Yixiong, Shao Ling, You Xinge

出版信息

IEEE Trans Image Process. 2024;33:5564-5576. doi: 10.1109/TIP.2024.3411771. Epub 2024 Oct 4.

Abstract

Few-shot object detection (FSOD) identifies objects from extremely few annotated samples. Most existing FSOD methods, recently, apply the two-stage learning paradigm, which transfers the knowledge learned from abundant base classes to assist the few-shot detectors by learning the global features. However, such existing FSOD approaches seldom consider the localization of objects from local to global. Limited by the scarce training data in FSOD, the training samples of novel classes typically capture part of objects, resulting in such FSOD methods being unable to detect the completely unseen object during testing. To tackle this problem, we propose an Extensible Co-Existing Attention (ECEA) module to enable the model to infer the global object according to the local parts. Specifically, we first devise an extensible attention mechanism that starts with a local region and extends attention to co-existing regions that are similar and adjacent to the given local region. We then implement the extensible attention mechanism in different feature scales to progressively discover the full object in various receptive fields. In the training process, the model learns the extensible ability on the base stage with abundant samples and transfers it to the novel stage of continuous extensible learning, which can assist the few-shot model to quickly adapt in extending local regions to co-existing regions. Extensive experiments on the PASCAL VOC and COCO datasets show that our ECEA module can assist the few-shot detector to completely predict the object despite some regions failing to appear in the training samples and achieve the new state-of-the-art compared with existing FSOD methods. Code is released at https://github.com/zhimengXin/ECEA.

摘要

少样本目标检测(FSOD)从极少的标注样本中识别目标。最近,大多数现有的FSOD方法采用两阶段学习范式,即通过学习全局特征来转移从大量基础类别中学到的知识,以辅助少样本检测器。然而,此类现有的FSOD方法很少考虑从局部到全局的目标定位。受FSOD中稀缺训练数据的限制,新类别训练样本通常只捕捉到部分目标,导致此类FSOD方法在测试时无法检测到完全未见过的目标。为了解决这个问题,我们提出了一种可扩展共存注意力(ECEA)模块,使模型能够根据局部部分推断全局目标。具体来说,我们首先设计了一种可扩展注意力机制,该机制从局部区域开始,将注意力扩展到与给定局部区域相似且相邻的共存区域。然后,我们在不同特征尺度上实现可扩展注意力机制,以逐步在各种感受野中发现完整目标。在训练过程中,模型在有大量样本的基础阶段学习可扩展能力,并将其转移到连续可扩展学习的新类别阶段,这可以帮助少样本模型在将局部区域扩展到共存区域时快速适应。在PASCAL VOC和COCO数据集上的大量实验表明,我们的ECEA模块可以帮助少样本检测器完全预测目标,尽管有些区域在训练样本中未出现,并且与现有FSOD方法相比达到了新的最优水平。代码已在https://github.com/zhimengXin/ECEA上发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验