Suppr超能文献

基于卷积神经网络的多类型混合岩岩性分类新方法。

A Novel Method of Multitype Hybrid Rock Lithology Classification Based on Convolutional Neural Networks.

机构信息

School of Resources and Safety Engineering, Central South University, Changsha 410083, China.

出版信息

Sensors (Basel). 2022 Feb 17;22(4):1574. doi: 10.3390/s22041574.

Abstract

Rock lithology recognition plays a fundamental role in geological survey research, mineral resource exploration, mining engineering, etc. However, the objectivity of researchers, rock variable natures, and tedious experimental processes make it difficult to ensure the accurate and effective identification of rock lithology. Additionally, multitype hybrid rock lithology identification is challenging, and few studies on this issue are available. In this paper, a novel multitype hybrid rock lithology detection method was proposed based on convolutional neural network (CNN), and neural network model compression technology was adopted to guarantee the model inference efficiency. Four fundamental single class rock datasets: sandstone, shale, monzogranite, and tuff were collected. At the same time, multitype hybrid rock lithologies datasets were obtained based on data augmentation method. The proposed model was then trained on multitype hybrid rock lithologies datasets. Besides, for comparison purposes, the other three algorithms, were trained and evaluated. Experimental results revealed that our method exhibited the best performance in terms of precision, recall, and efficiency compared with the other three algorithms. Furthermore, the inference time of the proposed model is twice as fast as the other three methods. It only needs 11 milliseconds for single image detection, making it possible to be applied to the industry by transforming the algorithm to an embedded hardware device or Android platform.

摘要

岩性识别在地质调查研究、矿产资源勘查、采矿工程等领域都具有重要作用。然而,由于研究人员的主观性、岩石性质的多变性以及繁琐的实验过程,使得岩性的准确有效识别难以保证。此外,多类型混合岩性的识别也具有挑战性,目前针对这一问题的研究较少。本文提出了一种基于卷积神经网络(CNN)的新型多类型混合岩性检测方法,并采用神经网络模型压缩技术来保证模型的推理效率。我们收集了四种基本的单类岩石数据集:砂岩、页岩、正长岩和凝灰岩。同时,还基于数据增强方法获得了多类型混合岩性数据集。然后,我们在多类型混合岩性数据集上对提出的模型进行了训练。此外,为了进行比较,还对其他三种算法进行了训练和评估。实验结果表明,与其他三种算法相比,我们的方法在精度、召回率和效率方面表现最佳。此外,我们提出的模型的推理时间比其他三种方法快两倍。它只需要 11 毫秒即可完成单张图像的检测,因此可以通过将算法转换为嵌入式硬件设备或 Android 平台,将其应用于工业领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e5f/8880627/d53c5d9142bb/sensors-22-01574-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验