Suppr超能文献

基于几何建模的实时足部跟踪与步态评估。

Real-Time Foot Tracking and Gait Evaluation with Geometric Modeling.

机构信息

Rehabilitation Research Institute of Singapore, Singapore 308232, Singapore.

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.

出版信息

Sensors (Basel). 2022 Feb 20;22(4):1661. doi: 10.3390/s22041661.

Abstract

Gait evaluation is important in gait rehabilitation and assistance to monitor patient's balance status and assess recovery performance. Recent technologies leverage on vision-based systems with high portability and low operational complexity. In this paper, we propose a new vision-based foot tracking algorithm specially catering to overground gait assistive devices, which often have limited view of the users. The algorithm models the foot and the shank of the user using simple geometry. Through cost optimization, it then aligns the models to the point cloud, showing the back view of the user's lower limbs. The system outputs the poses of the feet, which are used to compute the spatial-temporal gait parameters. Seven healthy young subjects are recruited to perform overground and treadmill walking trials. The results of the algorithm are compared with the motion capture system and a third-party gait analysis software. The algorithm has a fitting rotational and translational errors of less than 20 degrees and 33 mm, respectively, for 0.4 m/s walking speed. The gait detection F1 score achieves more than 96.8%. The step length and step width errors are around 35 mm, while the cycle time error is less than 38 ms. The proposed algorithm provides a fast, contactless, portable, and cost-effective gait evaluation method without requiring the user to wear any customized footwear.

摘要

步态评估在步态康复和辅助中很重要,可用于监测患者的平衡状态和评估康复效果。最近的技术利用基于视觉的系统,具有高便携性和低操作复杂性。在本文中,我们提出了一种新的基于视觉的足部跟踪算法,专门针对地面步态辅助设备,这些设备通常对用户的视野有限。该算法使用简单的几何形状对用户的脚和小腿进行建模。通过成本优化,将模型与点云对齐,显示用户下肢的后视图。系统输出足部的姿势,用于计算时空步态参数。我们招募了 7 名健康的年轻受试者进行地面和跑步机行走试验。将算法的结果与运动捕捉系统和第三方步态分析软件进行比较。对于 0.4m/s 的行走速度,算法的拟合旋转和平移误差分别小于 20 度和 33mm。步态检测 F1 得分超过 96.8%。步长和步宽误差约为 35mm,而周期时间误差小于 38ms。该算法提供了一种快速、非接触、便携且具有成本效益的步态评估方法,无需用户穿戴任何定制的鞋类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b9e/8875817/5354b9760438/sensors-22-01661-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验