Suppr超能文献

基于云计算的改进共生生物搜索算法(AI)在最优任务调度中的应用。

A Cloud Computing-Based Modified Symbiotic Organisms Search Algorithm (AI) for Optimal Task Scheduling.

机构信息

Faculty of Engineering, School of Computing, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia.

Department of Computer Science, College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia.

出版信息

Sensors (Basel). 2022 Feb 21;22(4):1674. doi: 10.3390/s22041674.

Abstract

The search algorithm based on symbiotic organisms' interactions is a relatively recent bio-inspired algorithm of the swarm intelligence field for solving numerical optimization problems. It is meant to optimize applications based on the simulation of the symbiotic relationship among the distinct species in the ecosystem. The task scheduling problem is NP complete, which makes it hard to obtain a correct solution, especially for large-scale tasks. This paper proposes a modified symbiotic organisms search-based scheduling algorithm for the efficient mapping of heterogeneous tasks to access cloud resources of different capacities. The significant contribution of this technique is the simplified representation of the algorithm's mutualism process, which uses equity as a measure of relationship characteristics or efficiency of species in the current ecosystem to move to the next generation. These relational characteristics are achieved by replacing the original mutual vector, which uses an arithmetic mean to measure the mutual characteristics with a geometric mean that enhances the survival advantage of two distinct species. The modified symbiotic organisms search algorithm (G_SOS) aims to minimize the task execution time (makespan), cost, response time, and degree of imbalance, and improve the convergence speed for an optimal solution in an IaaS cloud. The performance of the proposed technique was evaluated using a CloudSim toolkit simulator, and the percentage of improvement of the proposed G_SOS over classical SOS and PSO-SA in terms of makespan minimization ranges between 0.61-20.08% and 1.92-25.68% over a large-scale task that spans between 100 to 1000 Million Instructions (MI). The solutions are found to be better than the existing standard (SOS) technique and PSO.

摘要

基于共生生物相互作用的搜索算法是一种相对较新的群体智能领域的生物启发算法,用于解决数值优化问题。它旨在通过模拟生态系统中不同物种之间的共生关系来优化应用程序。任务调度问题是 NP 完全的,这使得很难获得正确的解决方案,尤其是对于大规模任务。本文提出了一种改进的基于共生生物搜索的调度算法,用于高效地将异构任务映射到具有不同容量的云资源。该技术的主要贡献是简化了算法共生过程的表示,使用公平性作为当前生态系统中物种关系特征或效率的度量,以便进入下一代。这些关系特征是通过替换原始共生向量来实现的,原始共生向量使用算术平均值来衡量共生特征,而使用几何平均值来增强两种不同物种的生存优势。改进的共生生物搜索算法(G_SOS)旨在最小化任务执行时间(完成时间)、成本、响应时间和不平衡度,并提高 IaaS 云中最优解决方案的收敛速度。使用 CloudSim 工具包模拟器评估了所提出技术的性能,在大规模任务(范围从 100 到 1000 百万指令(MI))中,与经典 SOS 和 PSO-SA 相比,所提出的 G_SOS 在完成时间最小化方面的改进百分比在 0.61%到 20.08%之间,在 1.92%到 25.68%之间。结果表明,所提出的解决方案优于现有标准(SOS)技术和 PSO。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54c8/8878445/8dbd1e4dd07d/sensors-22-01674-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验