Suppr超能文献

具有顺序相关设置时间的无关并行机调度的共生生物体搜索算法。

Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times.

机构信息

School of Mathematics, Statistics and Computer Science, University of Kwazulu-Natal, Westville Campus, Durban, South Africa.

出版信息

PLoS One. 2018 Jul 5;13(7):e0200030. doi: 10.1371/journal.pone.0200030. eCollection 2018.

Abstract

This paper addresses the problem of makespan minimization on unrelated parallel machines with sequence dependent setup times. The symbiotic organisms search (SOS) algorithm is a new and popular global optimization technique that has received wide acceptance in recent years from researchers in continuous and discrete optimization domains. An improved SOS algorithm is developed to solve the parallel machine scheduling problem. Since the standard SOS algorithm was originally developed to solve continuous optimization problems, a new solution representation and decoding procedure is designed to make the SOS algorithm suitable for the unrelated parallel machine scheduling problem (UPMSP). Similarly, to enhance the solution quality of the SOS algorithm, an iterated local search strategy based on combining variable numbers of insertion and swap moves is incorporated into the SOS algorithm. More so, to further improve the SOS optimization speed and performance, the longest processing time first (LPT) rule is used to design a machine assignment heuristic that assigns processing machines to jobs based on the machine dynamic load-balancing mechanism. Subsequently, the machine assignment scheme is incorporated into SOS algorithms and used to solve the UPMSP. The performances of the proposed methods are evaluated by comparing their solutions with other existing techniques from the literature. A number of statistical tests were also conducted to determine the variations in performance for each of the techniques. The experimental results showed that the SOS with LPT (SOS-LPT) heuristic has the best performance compared to other tested method, which is closely followed by SOS algorithm, indicating that the two proposed algorithms' solution approaches are reasonable and effective for solving large-scale UPMSPs.

摘要

本文针对具有顺序相关设置时间的独立平行机的最大完工时间最小化问题。共生生物搜索(SOS)算法是一种新的流行的全局优化技术,近年来在连续和离散优化领域受到研究人员的广泛认可。为了解决并行机器调度问题,开发了一种改进的 SOS 算法。由于标准 SOS 算法最初是为解决连续优化问题而开发的,因此设计了一种新的解决方案表示和解码过程,以使 SOS 算法适用于独立并行机器调度问题(UPMSP)。同样,为了提高 SOS 算法的求解质量,将基于插入和交换移动数量的迭代局部搜索策略合并到 SOS 算法中。此外,为了进一步提高 SOS 优化速度和性能,使用最长处理时间优先(LPT)规则设计机器分配启发式,根据机器动态负载平衡机制将处理机器分配给作业。随后,机器分配方案被合并到 SOS 算法中,用于解决 UPMSP。通过将其解决方案与文献中的其他现有技术进行比较,评估所提出方法的性能。还进行了一些统计测试,以确定每种技术的性能变化。实验结果表明,与其他测试方法相比,带 LPT 的 SOS(SOS-LPT)启发式具有最佳性能,紧随其后的是 SOS 算法,表明所提出的两种算法的解决方案方法对于解决大规模 UPMSP 是合理有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1574/6033448/2a5e75d563d3/pone.0200030.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验