Department of Basic Medical Science, College of Medicine, Qatar University Health, Qatar University, Doha P.O. Box 2713, Qatar.
Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.
Int J Mol Sci. 2022 Feb 16;23(4):2165. doi: 10.3390/ijms23042165.
The recent discovery of the glucose-induced stabilization of hexokinase-2 (HK2) to proteolysis in cell dysfunction in model hyperglycemia has revealed a likely key initiating factor contributing to the development of insulin resistance and vascular complications in diabetes. Consequently, the increased flux of glucose metabolism without a change in the expression and activity of glycolytic enzymes produces a wave of increased glycolytic intermediates driving mitochondrial dysfunction and increased reactive oxygen species (ROS) formation, the activation of hexosamine and protein kinase C pathways, the increased formation of methylglyoxal-producing dicarbonyl stress, and the activation of the unfolded protein response. This is called HK2-linked glycolytic overload and unscheduled glycolysis. The conditions required to sustain this are GLUT1 and/or GLUT3 glucose uptake and the expression of HK2. A metabolic biomarker of its occurrence is the abnormally increased deposition of glycogen, which is produced by metabolic channeling when HK2 becomes detached from mitochondria. These conditions and metabolic consequences are found in the vasculature, kidneys, retina, peripheral nerves, and early-stage embryo development in diabetes and likely sustain the development of diabetic vascular complications and embryopathy. In insulin resistance, HK2-linked unscheduled glycolysis may also be established in skeletal muscle and adipose tissue. This may explain the increased glucose disposal by skeletal uptake in the fasting phase in patients with type 2 diabetes mellitus, compared to healthy controls, and the presence of insulin resistance in patients with type 1 diabetes mellitus. Importantly, glyoxalase 1 inducer--resveratrol and hesperetin in combination (tRES-HESP)-corrected HK2-linked glycolytic overload and unscheduled glycolysis and reversed insulin resistance and improved vascular inflammation in overweight and obese subjects in clinical trial. Further studies are now required to evaluate tRES-HESP for the prevention and reversal of early-stage type 2 diabetes and for the treatment of the vascular complications of diabetes.
最近在模型高血糖症中细胞功能障碍时发现葡萄糖诱导的己糖激酶-2(HK2)稳定作用可抵抗蛋白水解,这揭示了一种可能的关键起始因素,有助于糖尿病患者胰岛素抵抗和血管并发症的发展。因此,葡萄糖代谢通量增加而糖酵解酶的表达和活性没有变化,会产生一波增加的糖酵解中间产物,导致线粒体功能障碍和活性氧(ROS)形成增加、己糖胺和蛋白激酶 C 途径的激活、产生甲基乙二醛的二羰基应激形成增加以及未折叠蛋白反应的激活。这被称为与 HK2 相关的糖酵解过载和非计划性糖酵解。维持这种情况所需的条件是 GLUT1 和/或 GLUT3 葡萄糖摄取以及 HK2 的表达。其发生的代谢生物标志物是糖原的异常增加沉积,当 HK2 与线粒体分离时,通过代谢通道化产生糖原。在糖尿病中,这些条件和代谢后果存在于血管、肾脏、视网膜、周围神经和早期胚胎发育中,可能维持糖尿病血管并发症和胚胎病的发展。在胰岛素抵抗中,HK2 相关的非计划性糖酵解也可能在骨骼肌和脂肪组织中建立。这可以解释为什么与健康对照组相比,2 型糖尿病患者空腹时骨骼肌摄取的葡萄糖清除率增加,以及 1 型糖尿病患者存在胰岛素抵抗。重要的是,glyoxalase 1 诱导剂——白藜芦醇和橙皮苷组合(tRES-HESP)纠正了与 HK2 相关的糖酵解过载和非计划性糖酵解,并逆转了超重和肥胖受试者的胰岛素抵抗,改善了血管炎症。现在需要进一步的研究来评估 tRES-HESP 在预防和逆转早期 2 型糖尿病以及治疗糖尿病血管并发症方面的效果。