Suppr超能文献

整合基因组和转录组分析揭示了子宫肌瘤与平滑肌肉瘤的差异分子特征。

Integrative Genomic and Transcriptomic Profiling Reveals a Differential Molecular Signature in Uterine Leiomyoma versus Leiomyosarcoma.

机构信息

Igenomix Foundation, INCLIVA Biomedical Research Institute, 46980 Valencia, Spain.

Research and Development Department, Igenomix SL, 46980 Paterna, Spain.

出版信息

Int J Mol Sci. 2022 Feb 16;23(4):2190. doi: 10.3390/ijms23042190.

Abstract

The absence of standardized molecular profiling to differentiate uterine leiomyosarcomas versus leiomyomas represents a current diagnostic challenge. In this study, we aimed to search for a differential molecular signature for these myometrial tumors based on artificial intelligence. For this purpose, differential exome and transcriptome-wide research was performed on histologically confirmed leiomyomas ( = 52) and leiomyosarcomas ( = 44) to elucidate differences between and within these two entities. We identified a significantly higher tumor mutation burden in leiomyosarcomas vs. leiomyomas in terms of somatic single-nucleotide variants (171,863 vs. 81,152), indels (9491 vs. 4098), and copy number variants (8390 vs. 5376). Further, we discovered alterations in specific copy number variant regions that affect the expression of some tumor suppressor genes. A transcriptomic analysis revealed 489 differentially expressed genes between these two conditions, as well as structural rearrangements targeting ATRX and RAD51B. These results allowed us to develop a machine learning approach based on 19 differentially expressed genes that differentiate both tumor types with high sensitivity and specificity. Our findings provide a novel molecular signature for the diagnosis of leiomyoma and leiomyosarcoma, which could be helpful to complement the current morphological and immunohistochemical diagnosis and may lay the foundation for the future evaluation of malignancy risk.

摘要

缺乏标准化的分子谱分析来区分子宫平滑肌肉瘤和平滑肌瘤,这是目前诊断的一个挑战。在这项研究中,我们旨在基于人工智能寻找这些子宫肿瘤的差异分子特征。为此,对经组织学证实的平滑肌瘤(=52 例)和平滑肌肉瘤(=44 例)进行了差异外显子和转录组全基因组研究,以阐明这两种实体之间和内部的差异。我们发现,在体细胞单核苷酸变异(171863 对 81152)、插入缺失(9491 对 4098)和拷贝数变异(8390 对 5376)方面,平滑肌肉瘤中的肿瘤突变负担明显高于平滑肌瘤。此外,我们发现了特定拷贝数变异区域的改变,这些改变影响了一些肿瘤抑制基因的表达。转录组分析揭示了这两种情况下 489 个差异表达基因,以及针对 ATRX 和 RAD51B 的结构重排。这些结果使我们能够基于 19 个差异表达基因开发一种机器学习方法,该方法可以高度敏感和特异性地区分这两种肿瘤类型。我们的研究结果为平滑肌瘤和平滑肌肉瘤的诊断提供了一个新的分子特征,这可能有助于补充当前的形态学和免疫组织化学诊断,并为未来评估恶性风险奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ff/8877247/6691a0df4061/ijms-23-02190-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验