Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
Biomaterials. 2022 Apr;283:121429. doi: 10.1016/j.biomaterials.2022.121429. Epub 2022 Feb 18.
The bleeding disorder hemophilia A (HA) is caused by a single-gene (F8) defect and its clinical symptom can be substantially improved by a small increase in the plasma coagulation factor VIII (FVIII) level. In this study, we used F8-defective human induced pluripotent stem cells from an HA patient (F8d-HA hiPSCs) and F8-corrected (F8c) HA hiPSCs produced by CRISPR/Cas9 genome engineering of F8d-HA hiPSCs. We obtained a highly enriched population of CD157 cells from CRISPR/Cas9-edited F8c-HA hiPSCs. These cells exhibited multiple cellular and functional phenotypes of endothelial cells (ECs) with significant levels of FVIII activity, which was not observed in F8d-HA hiPSC-ECs. After transplantation, the engineered F8c-HA hiPSC-ECs dramatically changed bleeding episodes in HA animals and restored plasma FVIII activity. Notably, grafting a high dose of ECs substantially reduced the bleeding time during multiple consecutive bleeding challenges in HA mice, demonstrating a robust hemostatic effect (90% survival). Furthermore, the engrafted ECs survived more than 3 months in HA mice and reversed bleeding phenotypes against lethal wounding challenges. We also produced F8c-HA hiPSC-derived 3D liver organoids by assembling three different cell types in microwell devices and confirmed its therapeutic effect in HA animals. Our data demonstrate that the combination of genome-engineering and iPSC technologies represents a novel modality that allows autologous cell-mediated gene therapy for treating HA.
遗传性凝血因子Ⅷ缺乏症(hemophilia A,HA)是由单个基因(F8)缺陷引起的,其临床症状可以通过增加少量血浆凝血因子Ⅷ(FVIII)水平得到显著改善。在这项研究中,我们使用了来自 HA 患者的 F8 缺陷型人诱导多能干细胞(F8d-HA hiPSCs)和通过 CRISPR/Cas9 基因组工程对 F8d-HA hiPSCs 进行 F8 校正(F8c)的 HA hiPSCs。我们从经 CRISPR/Cas9 编辑的 F8c-HA hiPSCs 中获得了 CD157 细胞的高度富集群体。这些细胞表现出内皮细胞(ECs)的多种细胞和功能表型,并且具有显著水平的 FVIII 活性,而在 F8d-HA hiPSC-ECs 中则没有观察到。移植后,经工程改造的 F8c-HA hiPSC-ECs 可显著改变 HA 动物的出血事件,并恢复血浆 FVIII 活性。值得注意的是,移植高剂量的 ECs 可在 HA 小鼠的多次连续出血挑战中大大减少出血时间,显示出强大的止血效果(90%的存活率)。此外,移植的 ECs 在 HA 小鼠中存活时间超过 3 个月,并可逆转致命创伤挑战中的出血表型。我们还通过在微井设备中组装三种不同的细胞类型生成了 F8c-HA hiPSC 衍生的 3D 肝类器官,并证实了其在 HA 动物中的治疗效果。我们的数据表明,基因组工程和 iPSC 技术的结合代表了一种新的模式,允许自体细胞介导的基因治疗来治疗 HA。