Suppr超能文献

一种用于自动逆向规划的超参数调整方法。

A hyperparameter-tuning approach to automated inverse planning.

作者信息

Maass K, Aravkin A, Kim M

机构信息

University of Washington, Seattle, Washington, USA.

出版信息

Med Phys. 2022 May;49(5):3405-3415. doi: 10.1002/mp.15557. Epub 2022 Mar 10.

Abstract

BACKGROUND

In current practice, radiotherapy inverse planning often requires treatment planners to modify multiple parameters in the treatment planning system's objective function to produce clinically acceptable plans. Due to the manual steps in this process, plan quality can vary depending on the planning time available and the planner's skills.

PURPOSE

This study investigates the feasibility of two hyperparameter-tuning methods for automated inverse planning. Because this framework does not train a model on previously optimized plans, it can be readily adapted to practice pattern changes, and the resulting plan quality is not limited by that of a training cohort.

METHOD

We retrospectively selected 10 patients who received lung stereotactic body radiation therapy using manually generated clinical plans. We implemented random sampling and Bayesian optimization to automatically tune objective function parameters using linear-quadratic utility functions based on 11 clinical goals. Normalizing all plans to deliver a minimum dose of 48 Gy to 95% of the planning target volume, we compared plan quality for the automatically generated plans to the manually generated plans. We also investigated the impact of iteration count on the automatically generated plans, comparing planning time and plan utility for randomized and Bayesian plans with and without stopping criteria.

RESULTS

Without stopping criteria, the median planning time was 1.9 and 2.3 h for randomized and Bayesian plans, respectively. The organ-at-risk (OAR) doses in the randomized and Bayesian plans had a median percent difference (MPD) of 48.7% and 60.4% below clinical dose limits and an MPD of 2.8% and 3.3% below clinical plan doses. With stopping criteria, the utility decreased by an MPD of 5.3% and 3.9% for randomized and Bayesian plans, but the median planning time was reduced to 0.5 and 0.7 h, and the OAR doses still had an MPD of 42.9% and 49.7% below clinical dose limits and an MPD of 0.3% and 1.8% below clinical plan doses.

CONCLUSIONS

This study demonstrates that hyperparameter-tuning approaches to automated inverse planning can reduce the treatment planner's active planning time with plan quality that is similar to or better than manually generated plans.

摘要

背景

在当前的实践中,放射治疗逆向计划通常要求治疗计划师在治疗计划系统的目标函数中修改多个参数,以生成临床可接受的计划。由于此过程中的手动步骤,计划质量可能会因可用的计划时间和计划师的技能而有所不同。

目的

本研究调查了两种超参数调整方法用于自动逆向计划的可行性。由于该框架不是在先前优化的计划上训练模型,因此它可以很容易地适应实践模式的变化,并且生成的计划质量不受训练队列的限制。

方法

我们回顾性选择了10例接受肺部立体定向体部放射治疗的患者,使用手动生成的临床计划。我们实施了随机抽样和贝叶斯优化,以基于11个临床目标使用线性二次效用函数自动调整目标函数参数。将所有计划归一化,以使95%的计划靶体积接受至少48 Gy的剂量,我们将自动生成的计划的计划质量与手动生成的计划进行了比较。我们还研究了迭代次数对自动生成的计划的影响,比较了有和没有停止标准的随机计划和贝叶斯计划的计划时间和计划效用。

结果

在没有停止标准的情况下,随机计划和贝叶斯计划的中位计划时间分别为1.9小时和2.3小时。随机计划和贝叶斯计划中的危及器官(OAR)剂量低于临床剂量限值的中位百分比差异(MPD)分别为48.7%和60.4%,低于临床计划剂量的MPD分别为2.8%和3.3%。有停止标准时,随机计划和贝叶斯计划的效用分别降低了5.3%和3.9%的MPD,但中位计划时间减少到0.5小时和0.7小时,OAR剂量低于临床剂量限值的MPD仍分别为42.9%和49.7%,低于临床计划剂量的MPD分别为0.3%和1.8%。

结论

本研究表明,自动逆向计划的超参数调整方法可以减少治疗计划师的主动计划时间,且计划质量与手动生成的计划相似或更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验