Suppr超能文献

模拟植被动态模型中对环境敏感的树种更新。

Simulating environmentally-sensitive tree recruitment in vegetation demographic models.

机构信息

The Energy and Resources Group, University of California, 345 Giannini Hall, Berkeley, CA, 94720, USA.

Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.

出版信息

New Phytol. 2022 Jul;235(1):78-93. doi: 10.1111/nph.18059. Epub 2022 Mar 15.

Abstract

Vegetation demographic models (VDMs) endeavor to predict how global forests will respond to climate change. This requires simulating which trees, if any, are able to recruit under changing environmental conditions. We present a new recruitment scheme for VDMs in which functional-type-specific recruitment rates are sensitive to light, soil moisture and the productivity of reproductive trees. We evaluate the scheme by predicting tree recruitment for four tropical tree functional types under varying meteorology and canopy structure at Barro Colorado Island, Panama. We compare predictions to those of a current VDM, quantitative observations and ecological expectations. We find that the scheme improves the magnitude and rank order of recruitment rates among functional types and captures recruitment limitations in response to variable understory light, soil moisture and precipitation regimes. Our results indicate that adopting this framework will improve VDM capacity to predict functional-type-specific tree recruitment in response to climate change, thereby improving predictions of future forest distribution, composition and function.

摘要

植被动态模型(VDM)旨在预测全球森林将如何应对气候变化。这需要模拟在变化的环境条件下,哪些树木(如果有的话)能够成功繁殖。我们提出了一种新的 VDM 招募方案,其中功能型特定的招募率对光、土壤湿度和繁殖树木的生产力敏感。我们通过在巴拿马巴罗科罗拉多岛的不同气象和冠层结构下预测四种热带树木功能型的树木招募情况来评估该方案。我们将预测结果与当前的 VDM、定量观测和生态预期进行了比较。我们发现,该方案提高了功能型之间招募率的幅度和等级顺序,并捕捉到了对可变林下光、土壤湿度和降水模式的招募限制。我们的结果表明,采用这一框架将提高 VDM 预测功能型特定树木对气候变化的招募能力,从而提高对未来森林分布、组成和功能的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验