Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China.
Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China.
J Hazard Mater. 2022 Jun 5;431:128513. doi: 10.1016/j.jhazmat.2022.128513. Epub 2022 Feb 19.
BiFeO (BFO) nanocage prepared by metal-organic-framework derivatization (MOF-d) was adopted as activator to first investigate the effect mechanism of visible-light on naproxen-degradation via peroxymonosulfate (PMS) activation. MOF-d BFO expressed more excellent PMS activation ability than hydrothermal-synthetic BFO, due to highly ordered mesopores. A 3.0 times higher pseudo-first-order degradation rate constant was achieved after visible-light introduced. The quenching experiments indicated that the contribution of ROS in naproxen degradation followed the order of SO>O ≈ •OH in MOF-d BFO/PMS/dark system, while changed into h>O > >OSO> •OH after visible-light introduced EPR tests first revealed that visible-light promoted O yield (non-radical pathway) but suppressed •OH and SO generation (free-radical pathways). N-purging experiments further proved that O primarily originates from the reaction between h and PMS, equivalently to that between O and e-h in MOF-d BFO/PMS/vis system. Under visible-light, PMS activation via Fe (III) might be hindered by e filling on Fe 3d orbital and anion PMS preferred to approach h rather than e, resulting in the decrease of •OH and SO yields. Moreover, PMS faces competition from adsorbed-O and oxygen-vacancies for e capture. The degradation-pathways for naproxen in dark and under visible light were both proposed in MOF-d BFO/PMS system.
采用金属有机骨架衍生(MOF-d)法制备的 BiFeO(BFO)纳米笼作为激活剂,首次通过过一硫酸盐(PMS)活化来研究可见光对萘普生降解的影响机制。MOF-d BFO 比水热合成的 BFO 具有更高的有序介孔,表现出更优异的 PMS 活化能力。引入可见光后,萘普生的假一级降解速率常数提高了 3.0 倍。淬灭实验表明,在 MOF-d BFO/PMS/暗体系中,ROS 在萘普生降解中的贡献顺序为 SO>O ≈ •OH,而在引入可见光后变为 h>O > •OH。EPR 测试首次表明,可见光促进了 O 的生成(非自由基途径),但抑制了 •OH 和 SO 的生成(自由基途径)。N 吹扫实验进一步证明,O 主要来源于 h 和 PMS 之间的反应,与 MOF-d BFO/PMS/vis 体系中 O 和 e-h 之间的反应相当。在可见光下,Fe(III)通过 PMS 活化可能受到 Fe 3d 轨道上 e 填充的阻碍,并且阴离子 PMS 更倾向于接近 h 而不是 e,导致 •OH 和 SO 的产率降低。此外,PMS 面临着被吸附-O 和氧空位竞争捕获 e 的问题。在 MOF-d BFO/PMS 体系中,提出了暗态和可见光下萘普生的降解途径。