Suppr超能文献

基于知识的特征工程,利用动态血压监测数据检测多种症状。

Knowledge-driven feature engineering to detect multiple symptoms using ambulatory blood pressure monitoring data.

机构信息

Tyndall National Institute, Cork, Ireland.

University College Cork, Cork, Ireland.

出版信息

Comput Methods Programs Biomed. 2022 Apr;217:106638. doi: 10.1016/j.cmpb.2022.106638. Epub 2022 Feb 9.

Abstract

BACKGROUND

Hypertension is a major health concern across the globe and needs to be properly diagnosed to so it can be treated and to mitigate for this critical health condition. In this context, ambulatory blood pressure monitoring is essential to provide for a proper diagnosis of hypertension, which may not be possible otherwise due to the white coat effect or masked hypertension. In this paper, the objective is to develop a model which incorporates expert's knowledge in the feature engineering process so as to accurately predict multiple medical conditions. As a case study, we have considered multiple symptoms related to hypertension and used an ambulatory blood pressure monitoring method to continuously acquire hypertension relevant data from a patient. The goal is to train a model with a minimum set of the most effective knowledge-driven features which are useful to detect multiple symptoms simultaneously using multi-class classification techniques.

METHOD

Artificial intelligence-based blood pressure monitoring techniques introduce a new dimension in the diagnosis of hypertension by enabling a continuous (24hours) analysis of systolic and diastolic blood pressure levels. In this work, we present a model that entails a knowledge-driven feature engineering method and implemented an ambulatory blood pressure monitoring system to diagnose multiple cardiac parameters and associated conditions simultaneously these include morning surge, circadian rhythm, and pulse pressure. The knowledge-driven features are extracted to improve the interpretability of the classification model and machine learning techniques (Random Forest, Naive Bayes, and KNN) were applied in a multi-label classification setup using RAkEL to classify multiple conditions simultaneously.

RESULTS

The results obtained (F 1 = 0.918) show that the Random forest technique has performed well for multilabel classification using knowledge-driven features. Our technique has also reduced the complexity of the model by reducing the number of features required to train a machine learning model.

CONCLUSION

Considering these results, we conclude that knowledge-driven feature engineering enhances the learning process by reducing the number of features given as input to the machine learning algorithm. The proposed feature engineering method considers expert's knowledge to develop better diagnosis models which are free from misleading data-driven noisy features in some situations. It is a white-box approach in which clinicians can under stand the importance of a feature while looking at its value.

摘要

背景

高血压是全球范围内的一个主要健康问题,需要进行适当的诊断,以便进行治疗,并减轻这种严重的健康状况。在这种情况下,动态血压监测对于正确诊断高血压至关重要,否则由于白大衣效应或隐匿性高血压,可能无法进行正确诊断。本文的目的是开发一种模型,该模型将专家的知识纳入特征工程过程中,以便准确预测多种医疗状况。作为一个案例研究,我们考虑了与高血压相关的多种症状,并使用动态血压监测方法从患者身上连续采集与高血压相关的数据。目标是使用多类分类技术,训练一个具有最小有效知识驱动特征集的模型,这些特征集对于同时检测多种症状非常有用。

方法

基于人工智能的血压监测技术通过实现对收缩压和舒张压水平的连续(24 小时)分析,为高血压的诊断带来了新的维度。在这项工作中,我们提出了一种模型,该模型需要一种知识驱动的特征工程方法,并实现了动态血压监测系统,以同时诊断多种心脏参数和相关病症,包括晨峰、昼夜节律和脉压。提取知识驱动特征以提高分类模型的可解释性,并使用随机森林、朴素贝叶斯和 KNN 等机器学习技术在多标签分类设置中应用 RAkEL 来同时分类多种病症。

结果

获得的结果(F1=0.918)表明,随机森林技术在使用知识驱动特征进行多标签分类方面表现良好。我们的技术还通过减少训练机器学习模型所需的特征数量,降低了模型的复杂性。

结论

考虑到这些结果,我们得出结论,知识驱动的特征工程通过减少输入到机器学习算法的特征数量来增强学习过程。所提出的特征工程方法考虑了专家的知识,以开发更好的诊断模型,这些模型在某些情况下不受误导性数据驱动的嘈杂特征的影响。这是一种白盒方法,临床医生可以在查看特征值时了解其重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验