文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于药物发现和精准肿瘤学的人乳腺癌衍生异种移植和类器官平台。

A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology.

机构信息

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

出版信息

Nat Cancer. 2022 Feb;3(2):232-250. doi: 10.1038/s43018-022-00337-6. Epub 2022 Feb 24.


DOI:10.1038/s43018-022-00337-6
PMID:35221336
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8882468/
Abstract

Models that recapitulate the complexity of human tumors are urgently needed to develop more effective cancer therapies. We report a bank of human patient-derived xenografts (PDXs) and matched organoid cultures from tumors that represent the greatest unmet need: endocrine-resistant, treatment-refractory and metastatic breast cancers. We leverage matched PDXs and PDX-derived organoids (PDxO) for drug screening that is feasible and cost-effective with in vivo validation. Moreover, we demonstrate the feasibility of using these models for precision oncology in real time with clinical care in a case of triple-negative breast cancer (TNBC) with early metastatic recurrence. Our results uncovered a Food and Drug Administration (FDA)-approved drug with high efficacy against the models. Treatment with this therapy resulted in a complete response for the individual and a progression-free survival (PFS) period more than three times longer than their previous therapies. This work provides valuable methods and resources for functional precision medicine and drug development for human breast cancer.

摘要

为了开发更有效的癌症疗法,迫切需要能够重现人类肿瘤复杂性的模型。我们报告了一批源自患者的异种移植物(PDX)和匹配的类器官培养物,这些肿瘤代表了最大的未满足需求:内分泌耐药、治疗抵抗和转移性乳腺癌。我们利用匹配的 PDX 和 PDX 衍生的类器官(PDxO)进行药物筛选,具有可行且具有成本效益的体内验证。此外,我们通过三阴性乳腺癌(TNBC)早期转移性复发的实时临床护理,证明了这些模型在实时精准肿瘤学中的可行性。我们的研究结果揭示了一种对这些模型具有高效性的 FDA 批准药物。该疗法的治疗使该患者完全缓解,并且无进展生存期(PFS)比之前的治疗方案长三倍以上。这项工作为人类乳腺癌的功能精准医学和药物开发提供了有价值的方法和资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/b9faf5e651de/43018_2022_337_Fig18_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/21521d1284f4/43018_2022_337_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/c574b0ea2110/43018_2022_337_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/c28c4f7b2977/43018_2022_337_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/f942c6907458/43018_2022_337_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/1a649ac7c2ae/43018_2022_337_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/cd60ad31cc34/43018_2022_337_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/57d3fedb74f2/43018_2022_337_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/1fbaa707c709/43018_2022_337_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/34ebf4acfbf4/43018_2022_337_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/154a79976a22/43018_2022_337_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/5e99509daf98/43018_2022_337_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/10792ab6d2c1/43018_2022_337_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/a291256adef0/43018_2022_337_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/bae988a03ff3/43018_2022_337_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/e0ec852b23bc/43018_2022_337_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/47db65e9a0a4/43018_2022_337_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/7f46d79922e4/43018_2022_337_Fig17_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/b9faf5e651de/43018_2022_337_Fig18_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/21521d1284f4/43018_2022_337_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/c574b0ea2110/43018_2022_337_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/c28c4f7b2977/43018_2022_337_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/f942c6907458/43018_2022_337_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/1a649ac7c2ae/43018_2022_337_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/cd60ad31cc34/43018_2022_337_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/57d3fedb74f2/43018_2022_337_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/1fbaa707c709/43018_2022_337_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/34ebf4acfbf4/43018_2022_337_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/154a79976a22/43018_2022_337_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/5e99509daf98/43018_2022_337_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/10792ab6d2c1/43018_2022_337_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/a291256adef0/43018_2022_337_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/bae988a03ff3/43018_2022_337_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/e0ec852b23bc/43018_2022_337_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/47db65e9a0a4/43018_2022_337_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/7f46d79922e4/43018_2022_337_Fig17_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae3/8882468/b9faf5e651de/43018_2022_337_Fig18_ESM.jpg

相似文献

[1]
A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology.

Nat Cancer. 2022-2

[2]
Breast cancer PDxO cultures for drug discovery and functional precision oncology.

STAR Protoc. 2023-9-15

[3]
The combination of breast cancer PDO and mini-PDX platform for drug screening and individualized treatment.

J Cell Mol Med. 2024-5

[4]
A living biobank of matched pairs of patient-derived xenografts and organoids for cancer pharmacology.

PLoS One. 2023

[5]
Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models.

Breast Cancer Res. 2021-8-3

[6]
Breast cancer organoids from malignant pleural effusion-derived tumor cells as an individualized medicine platform.

In Vitro Cell Dev Biol Anim. 2021-5

[7]
Development of Personalized Therapeutic Strategies by Targeting Actionable Vulnerabilities in Metastatic and Chemotherapy-Resistant Breast Cancer PDXs.

Cells. 2019-6-18

[8]
Translational and Clinical Relevance of PDX-Derived Organoid Models in Oncology Drug Discovery and Development.

Curr Protoc. 2022-7

[9]
A large collection of integrated genomically characterized patient-derived xenografts highlighting the heterogeneity of triple-negative breast cancer.

Int J Cancer. 2019-4-4

[10]
Modeling rectal cancer to advance neoadjuvant precision therapy.

Int J Cancer. 2020-9-1

引用本文的文献

[1]
Ceramide-induced Endoplasmic Reticulum Stress as a Targetable Vulnerability in Endocrine Therapy-Resistant Breast Cancer.

bioRxiv. 2025-8-22

[2]
Approaches to modeling cancer metastasis: from bench to bedside.

Front Oncol. 2025-8-8

[3]
Liver-Specific Extracellular Matrix Enables High-Fidelity Patient-Derived Hepatocellular Carcinoma Xenograft Models.

Biomater Res. 2025-8-21

[4]
Small round cell sarcoma tumoroid biobank reveals CIC::DUX4 sarcoma vulnerability to MCL-1 inhibition.

Nat Commun. 2025-8-21

[5]
A review of 3D bioprinting for organoids.

Med Rev (2021). 2025-1-14

[6]
TRIM24 as a therapeutic target in endocrine treatment-resistant breast cancer.

Proc Natl Acad Sci U S A. 2025-8-19

[7]
Resistance to neoadjuvant chemotherapy in breast cancers: a metabolic perspective.

J Exp Clin Cancer Res. 2025-8-11

[8]
Lean breast adipocytes secrete an oxylipin that suppresses breast cancer via ferroptosis.

bioRxiv. 2025-7-21

[9]
The LRP4/YAP axis drives the radiation-tolerant persister (RTP) cell state in breast cancer.

Theranostics. 2025-6-23

[10]
Mitochondrial glutathione import enables breast cancer metastasis via integrated stress response signaling.

Cancer Discov. 2025-7-31

本文引用的文献

[1]
ESR1 mutations and therapeutic resistance in metastatic breast cancer: progress and remaining challenges.

Br J Cancer. 2022-2

[2]
Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts.

Nat Genet. 2021-1

[3]
Birinapant Enhances Gemcitabine's Antitumor Efficacy in Triple-Negative Breast Cancer by Inducing Intrinsic Pathway-Dependent Apoptosis.

Mol Cancer Ther. 2021-2

[4]
Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy.

Nat Commun. 2020-10-2

[5]
PLK1 inhibition exhibits strong anti-tumoral activity in CCND1-driven breast cancer metastases with acquired palbociclib resistance.

Nat Commun. 2020-8-13

[6]
The mutational constraint spectrum quantified from variation in 141,456 humans.

Nature. 2020-5-27

[7]
Targeting triple-negative breast cancers with the Smac-mimetic birinapant.

Cell Death Differ. 2020-10

[8]
Systematic Establishment of Robustness and Standards in Patient-Derived Xenograft Experiments and Analysis.

Cancer Res. 2020-3-9

[9]
Identification of synergistic drug combinations using breast cancer patient-derived xenografts.

Sci Rep. 2020-1-30

[10]
Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression.

Genome Biol. 2019-12-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索