Shang Yadong, Tian Jianjun Paul, Wang Bixiang
School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China.
Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88001, USA.
Discrete Continuous Dyn Syst Ser B. 2019 Mar;24(3):1367-1391. doi: 10.3934/dcdsb.2019020.
This paper deals with the asymptotic behavior of the solutions of the non-autonomous one-dimensional stochastic Keller-Segel equations defined in a bounded interval with Neumann boundary conditions. We prove the existence and uniqueness of tempered pullback random attractors under certain conditions. We also establish the convergence of the solutions as well as the pullback random attractors of the stochastic equations as the intensity of noise approaches zero.
本文研究了在有界区间上定义的具有诺伊曼边界条件的非自治一维随机凯勒-西格尔方程解的渐近行为。我们在一定条件下证明了缓增拉回随机吸引子的存在性和唯一性。我们还建立了随机方程的解以及拉回随机吸引子在噪声强度趋于零时的收敛性。