Suppr超能文献

随机凯勒-塞格尔方程的渐近行为

ASYMPTOTIC BEHAVIOR OF THE STOCHASTIC KELLER-SEGEL EQUATIONS.

作者信息

Shang Yadong, Tian Jianjun Paul, Wang Bixiang

机构信息

School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China.

Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88001, USA.

出版信息

Discrete Continuous Dyn Syst Ser B. 2019 Mar;24(3):1367-1391. doi: 10.3934/dcdsb.2019020.

Abstract

This paper deals with the asymptotic behavior of the solutions of the non-autonomous one-dimensional stochastic Keller-Segel equations defined in a bounded interval with Neumann boundary conditions. We prove the existence and uniqueness of tempered pullback random attractors under certain conditions. We also establish the convergence of the solutions as well as the pullback random attractors of the stochastic equations as the intensity of noise approaches zero.

摘要

本文研究了在有界区间上定义的具有诺伊曼边界条件的非自治一维随机凯勒-西格尔方程解的渐近行为。我们在一定条件下证明了缓增拉回随机吸引子的存在性和唯一性。我们还建立了随机方程的解以及拉回随机吸引子在噪声强度趋于零时的收敛性。

相似文献

1
ASYMPTOTIC BEHAVIOR OF THE STOCHASTIC KELLER-SEGEL EQUATIONS.随机凯勒-塞格尔方程的渐近行为
Discrete Continuous Dyn Syst Ser B. 2019 Mar;24(3):1367-1391. doi: 10.3934/dcdsb.2019020.
10
Travelling waves in hyperbolic chemotaxis equations.双曲型化感趋性方程中的行波。
Bull Math Biol. 2011 Aug;73(8):1695-733. doi: 10.1007/s11538-010-9586-4. Epub 2010 Oct 16.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验