Angot Hélène, McErlean Katelyn, Hu Lu, Millet Dylan B, Hueber Jacques, Cui Kaixin, Moss Jacob, Wielgasz Catherine, Milligan Tyler, Ketcherside Damien, Bret-Harte M Syndonia, Helmig Detlev
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA.
Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA.
Biogeosciences. 2020;17(23):6219-6236. doi: 10.5194/bg-17-6219-2020. Epub 2020 Dec 9.
Rapid Arctic warming, a lengthening growing season, and the increasing abundance of biogenic volatile-organic-compound-emitting shrubs are all anticipated to increase atmospheric biogenic volatile organic compounds (BVOCs) in the Arctic atmosphere, with implications for atmospheric oxidation processes and climate feedbacks. Quantifying these changes requires an accurate understanding of the underlying processes driving BVOC emissions in the Arctic. While boreal ecosystems have been widely studied, little attention has been paid to Arctic tundra environments. Here, we report terpenoid (isoprene, monoterpenes, and sesquiterpenes) ambient mixing ratios and emission rates from key dominant vegetation species at Toolik Field Station (TFS; 68°38' N, 149°36' W) in northern Alaska during two back-to-back field campaigns (summers of 2018 and 2019) covering the entire growing season. Isoprene ambient mixing ratios observed at TFS fell within the range of values reported in the Eurasian taiga (0-500 parts per trillion by volume - pptv), while monoterpene and sesquiterpene ambient mixing ratios were respectively close to and below the instrumental quantification limit (~ 2 pptv). Isoprene surface emission rates ranged from 0.2 to 2250 μgC m h (mean of 85 μgC m h) and monoterpene emission rates remained, on average, below 1 μgC m h over the course of the study. We further quantified the temperature dependence of isoprene emissions from local vegetation, including spp. (a known isoprene emitter), and compared the results to predictions from the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1). Our observations suggest a 180 %-215 % emission increase in response to a 3-4°C warming, and the MEGAN2.1 temperature algorithm exhibits a close fit with observations for enclosure temperatures in the 0-30°C range. The data presented here provide a baseline for investigating future changes in the BVOC emission potential of the under-studied Arctic tundra environment.
北极地区迅速变暖、生长季节延长以及排放生物源挥发性有机化合物的灌木数量不断增加,预计所有这些因素都会使北极大气中的生物源挥发性有机化合物(BVOCs)增加,这将对大气氧化过程和气候反馈产生影响。要量化这些变化,需要准确了解驱动北极地区BVOC排放的潜在过程。虽然北方生态系统已得到广泛研究,但北极苔原环境却很少受到关注。在此,我们报告了在阿拉斯加北部图利克野外站(TFS;北纬68°38′,西经149°36′),在连续两次涵盖整个生长季节的野外考察(2018年和2019年夏季)期间,关键优势植被物种的萜类化合物(异戊二烯、单萜和倍半萜)的环境混合比和排放率。在TFS观测到的异戊二烯环境混合比落在欧亚大陆针叶林报告的值范围内(0至500体积万亿分之一 - pptv),而单萜和倍半萜的环境混合比分别接近和低于仪器定量限(约2 pptv)。异戊二烯表面排放率范围为0.2至2250 μgC m² h(平均85 μgC m² h),在研究过程中,单萜排放率平均保持在1 μgC m² h以下。我们进一步量化了当地植被(包括 spp.(一种已知的异戊二烯排放者))异戊二烯排放的温度依赖性,并将结果与自然气体和气溶胶排放模型版本2.1(MEGAN2.1)的预测进行了比较。我们的观测结果表明,温度升高3 - 4°C时,排放增加180% - 215%,并且MEGAN2.1温度算法与0至30°C范围内的封闭温度观测结果拟合良好。此处呈现的数据为研究此前未充分研究的北极苔原环境中BVOC排放潜力的未来变化提供了基线。