Suppr超能文献

苔原生态系统植被对温度的强烈异戊二烯排放响应。

Strong isoprene emission response to temperature in tundra vegetation.

机构信息

Terrestrial Ecology Section, Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.

Center for Permafrost (CENPERM), University of Copenhagen, DK-1350 Copenhagen K, Denmark.

出版信息

Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2118014119. doi: 10.1073/pnas.2118014119. Epub 2022 Sep 12.

Abstract

Emissions of biogenic volatile organic compounds (BVOCs) are a crucial component of biosphere-atmosphere interactions. In northern latitudes, climate change is amplified by feedback processes in which BVOCs have a recognized, yet poorly quantified role, mainly due to a lack of measurements and concomitant modeling gaps. Hence, current Earth system models mostly rely on temperature responses measured on vegetation from lower latitudes, rendering their predictions highly uncertain. Here, we show how tundra isoprene emissions respond vigorously to temperature increases, compared to model results. Our unique dataset of direct eddy covariance ecosystem-level isoprene measurements in two contrasting ecosystems exhibited (the factor by which the emission rate increases with a 10 °C rise in temperature) temperature coefficients of up to 20.8, that is, 3.5 times the of 5.9 derived from the equivalent model calculations. Crude estimates using the observed temperature responses indicate that tundra vegetation could enhance their isoprene emissions by up to 41% (87%)-that is, 46% (55%) more than estimated by models-with a 2 °C (4 °C) warming. Our results demonstrate that tundra vegetation possesses the potential to substantially boost its isoprene emissions in response to future rising temperatures, at rates that exceed the current Earth system model predictions.

摘要

生物源挥发性有机化合物 (BVOCs) 的排放是生物圈-大气相互作用的一个重要组成部分。在北半球,气候变化因反馈过程而加剧,BVOCs 在这些过程中发挥了公认但量化程度较差的作用,主要是由于缺乏测量和相应的建模差距。因此,当前的地球系统模型主要依赖于从低纬度地区测量的植被温度响应,这使得它们的预测高度不确定。在这里,我们展示了与模型结果相比,冻原生态系统异戊二烯排放对温度升高的强烈响应。我们独特的直接涡度协方差生态系统水平异戊二烯测量数据集在两个对比的生态系统中显示,(排放速率随温度升高 10°C 而增加的倍数)温度系数高达 20.8,即比等效模型计算得出的 5.9 高出 3.5 倍。使用观察到的温度响应进行的粗略估计表明,冻原生态系统植被的异戊二烯排放可能增加多达 41%(87%),也就是说,比模型估计的高出 46%(55%),与 2°C(4°C)的变暖。我们的结果表明,冻原生态系统植被有可能在未来气温上升的情况下,以超过当前地球系统模型预测的速度,大幅增加其异戊二烯排放。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验