Khan Shadman, Jarad Noor Abu, Ladouceur Liane, Rachwalski Kenneth, Bot Veronica, Shakeri Amid, Maclachlan Roderick, Sakib Sadman, Weitz Jeffrey I, Brown Eric D, Soleymani Leyla, Didar Tohid F
School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada.
Small. 2022 Apr;18(15):e2108112. doi: 10.1002/smll.202108112. Epub 2022 Feb 28.
The surface fouling of biomedical devices has been an ongoing issue in healthcare. Bacterial and blood adhesion in particular, severely impede the performance of such tools, leading to poor patient outcomes. Various structural and chemical modifications have been shown to reduce fouling, but all existing strategies lack the combination of physical, chemical, and economic traits necessary for widespread use. Herein, a lubricant infused, hierarchically micro- and nanostructured polydimethylsiloxane surface is presented. The surface is easy to produce and exhibits the high flexibility and optical transparency necessary for incorporation into various biomedical tools. Tests involving two clinically relevant, priority pathogens show up to a 98.5% reduction in the biofilm formation of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. With blood, the surface reduces staining by 95% and suppresses thrombin generation to background levels. Furthermore, the surface shows applicability within applications such as catheters, extracorporeal circuits, and microfluidic devices, through its effectiveness in dynamic conditions. The perfusion of bacterial media shows up to 96.5% reduction in bacterial adhesion. Similarly, a 95.8% reduction in fibrin networks is observed following whole blood perfusion. This substrate stands to hold high applicability within biomedical systems as a means to prevent fouling, thus improving performance.
生物医学设备的表面污染一直是医疗保健领域的一个长期问题。尤其是细菌和血液的粘附,严重阻碍了此类工具的性能,导致患者预后不良。各种结构和化学修饰已被证明可以减少污染,但所有现有策略都缺乏广泛应用所需的物理、化学和经济特性的组合。在此,我们展示了一种注入润滑剂、具有分级微纳结构的聚二甲基硅氧烷表面。该表面易于制备,并且具有纳入各种生物医学工具所需的高柔韧性和光学透明度。涉及两种临床相关的优先病原体的测试表明,耐甲氧西林金黄色葡萄球菌和铜绿假单胞菌的生物膜形成减少了高达98.5%。对于血液,该表面可将染色减少95%,并将凝血酶生成抑制到背景水平。此外,通过其在动态条件下的有效性,该表面在导管、体外循环和微流控设备等应用中显示出适用性。灌注细菌培养基显示细菌粘附减少了高达96.5%。同样,全血灌注后观察到纤维蛋白网络减少了95.8%。这种基底作为一种防止污染从而提高性能的手段,在生物医学系统中具有很高的适用性。