Suppr超能文献

纤维素薄膜的湿度响应。

Humidity Response of Cellulose Thin Films.

机构信息

Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, Graz 8010, Austria.

Institute for Solid State Physics, Graz University of Technology, Petersgasse 16, Graz 8010, Austria.

出版信息

Biomacromolecules. 2022 Mar 14;23(3):1148-1157. doi: 10.1021/acs.biomac.1c01446. Epub 2022 Feb 28.

Abstract

Cellulose-water interactions are crucial to understand biological processes as well as to develop tailor made cellulose-based products. However, the main challenge to study these interactions is the diversity of natural cellulose fibers and alterations in their supramolecular structure. Here, we study the humidity response of different, well-defined, ultrathin cellulose films as a function of industrially relevant treatments using different techniques. As treatments, drying at elevated temperature, swelling, and swelling followed by drying at elevated temperatures were chosen. The cellulose films were prepared by spin coating a soluble cellulose derivative, trimethylsilyl cellulose, onto solid substrates followed by conversion to cellulose by HCl vapor. For the highest investigated humidity levels (97%), the layer thickness increased by ca. 40% corresponding to the incorporation of 3.6 molecules of water per anhydroglucose unit (AGU), independent of the cellulose source used. The aforementioned treatments affected this ratio significantly with drying being the most notable procedure (2.0 and 2.6 molecules per AGU). The alterations were investigated in real time with X-ray reflectivity and quartz crystal microbalance with dissipation, equipped with a humidity module to obtain information about changes in the thickness, roughness, and electron density of the films and qualitatively confirmed using grazing incidence small angle X-ray scattering measurements using synchrotron irradiation.

摘要

纤维素-水相互作用对于理解生物过程以及开发定制的纤维素基产品至关重要。然而,研究这些相互作用的主要挑战是天然纤维素纤维的多样性以及它们的超分子结构的改变。在这里,我们使用不同的技术研究了不同、定义明确的超薄纤维素薄膜在工业相关处理下的湿度响应。作为处理方法,选择了在高温下干燥、溶胀以及溶胀后在高温下干燥。纤维素薄膜是通过将可溶性纤维素衍生物三甲基硅基纤维素旋涂在固体基底上,然后通过氯化氢蒸汽转化为纤维素来制备的。对于所研究的最高湿度水平(97%),层厚度增加了约 40%,相当于每一个脱水葡萄糖单元(AGU)掺入 3.6 个水分子,与所用的纤维素来源无关。上述处理方法对该比例有显著影响,其中干燥是最显著的过程(每 AGU 有 2.0 和 2.6 个分子)。使用配备湿度模块的 X 射线反射率和石英晶体微天平(QCM-D)实时研究了这些变化,以获取有关薄膜厚度、粗糙度和电子密度变化的信息,并使用同步辐射的掠入射小角 X 射线散射测量定性地证实了这些变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/751a/8924868/825619fcabea/bm1c01446_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验