Suppr超能文献

机器学习模型能否预测儿童急性淋巴细胞白血病中与门冬酰胺酶相关的胰腺炎。

Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia.

机构信息

Departments of Health Technology.

Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet.

出版信息

J Pediatr Hematol Oncol. 2022 Apr 1;44(3):e628-e636. doi: 10.1097/MPH.0000000000002292.

Abstract

Asparaginase-associated pancreatitis (AAP) frequently affects children treated for acute lymphoblastic leukemia (ALL) causing severe acute and persisting complications. Known risk factors such as asparaginase dosing, older age and single nucleotide polymorphisms (SNPs) have insufficient odds ratios to allow personalized asparaginase therapy. In this study, we explored machine learning strategies for prediction of individual AAP risk. We integrated information on age, sex, and SNPs based on Illumina Omni2.5exome-8 arrays of patients with childhood ALL (N=1564, 244 with AAP 1.0 to 17.9 yo) from 10 international ALL consortia into machine learning models including regression, random forest, AdaBoost and artificial neural networks. A model with only age and sex had area under the receiver operating characteristic curve (ROC-AUC) of 0.62. Inclusion of 6 pancreatitis candidate gene SNPs or 4 validated pancreatitis SNPs boosted ROC-AUC somewhat (0.67) while 30 SNPs, identified through our AAP genome-wide association study cohort, boosted performance (0.80). Most predictive features included rs10273639 (PRSS1-PRSS2), rs10436957 (CTRC), rs13228878 (PRSS1/PRSS2), rs1505495 (GALNTL6), rs4655107 (EPHB2) and age (1 to 7 y). Second AAP following asparaginase re-exposure was predicted with ROC-AUC: 0.65. The machine learning models assist individual-level risk assessment of AAP for future prevention trials, and may legitimize asparaginase re-exposure when AAP risk is predicted to be low.

摘要

天冬酰胺酶相关胰腺炎(AAP)常影响接受急性淋巴细胞白血病(ALL)治疗的儿童,导致严重的急性和持续性并发症。已知的风险因素,如天冬酰胺酶剂量、年龄较大和单核苷酸多态性(SNP),其优势比不足以进行个性化的天冬酰胺酶治疗。在这项研究中,我们探索了用于预测个体 AAP 风险的机器学习策略。我们整合了基于 Illumina Omni2.5exome-8 阵列的年龄、性别和 SNP 信息,这些患者患有儿童 ALL(N=1564,244 例发生 AAP 1.0 至 17.9 岁),来自 10 个国际 ALL 联盟,纳入到包括回归、随机森林、AdaBoost 和人工神经网络在内的机器学习模型中。仅包含年龄和性别的模型的受试者工作特征曲线下面积(ROC-AUC)为 0.62。纳入 6 个胰腺炎候选基因 SNP 或 4 个验证的胰腺炎 SNP 略微提高了 ROC-AUC(0.67),而通过我们的 AAP 全基因组关联研究队列确定的 30 个 SNP 则提高了性能(0.80)。最具预测性的特征包括 rs10273639(PRSS1-PRSS2)、rs10436957(CTRC)、rs13228878(PRSS1/PRSS2)、rs1505495(GALNTL6)、rs4655107(EPHB2)和年龄(1 至 7 岁)。天冬酰胺酶再暴露后预测的第二次 AAP 的 ROC-AUC 为 0.65。这些机器学习模型有助于进行个体 AAP 风险评估,以用于未来的预防试验,并可能在预测 AAP 风险较低时使天冬酰胺酶再暴露合理化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec67/8946594/084ed8406220/mph-44-e628-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验