Matsumoto Ryo, Terashima Kensei, Nakano Satoshi, Nakamura Kazuki, Yamamoto Sayaka, Yamamoto Takafumi D, Ishikawa Takahiro, Adachi Shintaro, Irifune Tetsuo, Imai Motoharu, Takano Yoshihiko
International Center for Young Scientists (ICYS), National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan.
International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan.
Inorg Chem. 2022 Mar 14;61(10):4476-4483. doi: 10.1021/acs.inorgchem.2c00013. Epub 2022 Feb 28.
High-pressure techniques open exploration of functional materials in broad research fields. An established diamond anvil cell with a boron-doped diamond heater and transport measurement terminals has performed the high-pressure synthesis of a cubic SnS superconductor. X-ray diffraction and Raman spectroscopy reveal that the SnS phase is stable in the pressure range of > 5 GPa in a decompression process. Transport measurement terminals in the diamond anvil cell detect a metallic nature and superconductivity in the synthesized SnS with a maximum onset transition temperature () of 13.3 K at 5.6 GPa. The observed pressure- relationship is consistent with that from the first-principles calculation. The observation of superconductivity in SnS opens further materials exploration under high-temperature and -pressure conditions.
高压技术开启了在广泛研究领域对功能材料的探索。一个配备硼掺杂金刚石加热器和输运测量终端的成熟金刚石砧室实现了立方相SnS超导体的高压合成。X射线衍射和拉曼光谱表明,在减压过程中,SnS相在大于5 GPa的压力范围内是稳定的。金刚石砧室中的输运测量终端检测到合成的SnS具有金属特性和超导性,在5.6 GPa时最大起始转变温度()为13.3 K。观察到的压力-关系与第一性原理计算结果一致。在SnS中观察到超导性为高温高压条件下的进一步材料探索开辟了道路。