Suppr超能文献

利用介电弛豫光谱学和深度学习评估小肠活力。

Small intestinal viability assessment using dielectric relaxation spectroscopy and deep learning.

机构信息

Department of Physics, University of Oslo, Sem Sælands Vei 24, 0316, Oslo, Norway.

Department of Clinical and Biomedical Engineering, Oslo University Hospital, 0424, Oslo, Norway.

出版信息

Sci Rep. 2022 Feb 28;12(1):3279. doi: 10.1038/s41598-022-07140-4.

Abstract

Intestinal ischemia is a serious condition where the surgeon often has to make important but difficult decisions regarding resections and resection margins. Previous studies have shown that 3 h (hours) of warm full ischemia of the small bowel followed by reperfusion appears to be the upper limit for viability in the porcine mesenteric ischemia model. However, the critical transition between 3 to 4 h of ischemic injury can be nearly impossible to distinguish intraoperatively based on standard clinical methods. In this study, permittivity data from porcine intestine was used to analyze the characteristics of various degrees of ischemia/reperfusion injury. Our results show that dielectric relaxation spectroscopy can be used to assess intestinal viability. The dielectric constant and conductivity showed clear differences between healthy, ischemic and reperfused intestinal segments. This indicates that dielectric parameters can be used to characterize different intestinal conditions. In addition, machine learning models were employed to classify viable and non-viable segments based on frequency dependent dielectric properties of the intestinal tissue, providing a method for fast and accurate intraoperative surgical decision-making. An average classification accuracy of 98.7% was obtained using only permittivity data measured during ischemia, and 96.2% was obtained with data measured during reperfusion. The proposed approach allows the surgeon to get accurate evaluation from the trained machine learning model by performing one single measurement on an intestinal segment where the viability state is questionable.

摘要

肠缺血是一种严重的情况,外科医生通常必须在切除和切除边缘方面做出重要但困难的决定。先前的研究表明,猪肠系膜缺血模型中小肠 3 小时(小时)的温热全缺血后再灌注似乎是存活的上限。然而,根据标准临床方法,在 3 至 4 小时的缺血损伤之间的临界过渡几乎不可能在手术中区分。在这项研究中,猪肠的介电常数数据用于分析各种程度的缺血/再灌注损伤的特征。我们的结果表明,介电弛豫光谱可用于评估肠活力。介电常数和电导率在健康、缺血和再灌注肠段之间表现出明显差异。这表明介电参数可用于表征不同的肠状况。此外,还采用机器学习模型根据肠组织的频率相关介电特性对有活力和无活力的肠段进行分类,为术中快速准确的手术决策提供了一种方法。仅使用在缺血过程中测量的介电常数数据即可获得 98.7%的平均分类准确性,而使用在再灌注过程中测量的数据可获得 96.2%的平均分类准确性。该方法允许外科医生通过对可疑活力状态的肠段进行单次测量,从经过训练的机器学习模型中获得准确的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/affc/8885696/4bc3d82dd189/41598_2022_7140_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验