Suppr超能文献

利用多元线性关系预测选定同系物中沉积物中总多环芳烃浓度。

Predicting the total PAHs concentrations in sediments from selected congeners using a multiple linear relationship.

机构信息

Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China.

Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China.

出版信息

Sci Rep. 2022 Feb 28;12(1):3334. doi: 10.1038/s41598-022-07312-2.

Abstract

In this study, we observed that four congeners, including naphthalene (Nap), acenaphthylene (Acy), phenanthrene (Phe), and benz(a)anthracene (BaA), are the characteristic congeners for predicting the emission and the sediment concentrations of polycyclic aromatic hydrocarbons (PAHs). A novel multiple relationship of the total PAHs concentrations (C) in sediments with the concentrations of four congeners was established (p < 0.01, R = 0.95) using published data over the past 30 years. Moreover, the multiple linear relationship of the total PAHs emission factors with the emission factors of four congeners was also established (p < 0.01, R = 0.99). Interestingly, the ratio of multicomponents coefficient from the multiple linear relationship in sediments to that from the multiple linear relationship in emission sources correlated positively with octanol-water partition coefficient (logK) (p < 0.01, R = 0.88) of the four PAHs congeners. Therefore, a novel model was established to predict C in sediments using the emissions and logK of the four characteristic PAHs congeners. The percent sample deviation between calculated C and their observed values was 54%, suggesting the established model can accurately predict C in sediments.

摘要

在本研究中,我们观察到萘(Nap)、苊烯(Acy)、菲(Phe)和苯并(a)蒽(BaA)这四种同系物是预测多环芳烃(PAHs)排放和沉积物浓度的特征同系物。利用过去 30 年发表的数据,建立了沉积物中总多环芳烃(PAHs)浓度(C)与四种同系物浓度之间的新型多元关系(p<0.01,R=0.95)。此外,还建立了总 PAHs 排放因子与四种同系物排放因子之间的多元线性关系(p<0.01,R=0.99)。有趣的是,沉积物中多元线性关系的多组分系数与排放源中多元线性关系的多组分系数之比与四种 PAHs 同系物的辛醇-水分配系数(logK)呈正相关(p<0.01,R=0.88)。因此,建立了一个使用四种特征 PAHs 同系物的排放和 logK 来预测沉积物中 C 的新模型。计算的 C 与实测值之间的样本偏差百分比为 54%,表明所建立的模型能够准确预测沉积物中的 C。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/397b/8885927/2703bed93347/41598_2022_7312_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验