Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany.
Department of Microbiology, RIBES, Radboud University, Nijmegen, The Netherlands.
Environ Microbiol. 2022 Apr;24(4):2059-2077. doi: 10.1111/1462-2920.15958. Epub 2022 Mar 7.
Chemolithoautotrophic production of nitrate is accomplished by the polyphyletic functional group of nitrite-oxidizing bacteria (NOB). A widely distributed and important NOB clade in nitrogen removal processes at low temperatures is Nitrotoga, which however remains understudied due to the scarcity of cultivated representatives. Here, we present physiological, ultrastructural and genomic features of Nitrotoga strains from various habitats, including the first marine species enriched from an aquaculture system. Immunocytochemical analyses localized the nitrite-oxidizing enzyme machinery in the wide irregularly shaped periplasm, apparently without contact to the cytoplasmic membrane, confirming previous genomic data suggesting a soluble nature. Interestingly, in two strains we also observed multicellular complexes with a shared periplasmic space, which seem to form through incomplete cell division and might enhance fitness or survival. Physiological tests revealed differing tolerance limits towards dissolved inorganic nitrogen concentrations and confirmed the generally psychrotolerant nature of the genus. Moreover, comparative analysis of 15 Nitrotoga genomes showed, e.g. a unique gene repertoire of the marine strain that could be advantageous in its natural habitat and confirmed the lack of genes for assimilatory nitrite reduction in a strain found to require ammonium for growth. Overall, these novel insights largely broaden our knowledge of Nitrotoga and elucidate the metabolic variability, physiological limits and thus potential ecological roles of this group of nitrite oxidizers.
化能自养硝酸盐的产生是由亚硝酸盐氧化细菌(NOB)的多系功能群完成的。在低温脱氮过程中,广泛分布且重要的 NOB 分支是 Nitrotoga,但由于可培养代表物的稀缺,该分支仍未得到充分研究。在这里,我们介绍了来自不同生境的 Nitrotoga 菌株的生理、超微结构和基因组特征,包括首次从水产养殖系统中富集的海洋物种。免疫细胞化学分析将亚硝酸盐氧化酶机制定位于宽而不规则形状的周质中,显然与细胞质膜没有接触,这证实了先前的基因组数据表明其具有可溶性性质。有趣的是,在两个菌株中,我们还观察到具有共享周质空间的多细胞复合物,这些复合物似乎通过不完全的细胞分裂形成,可能会增强适应性或生存能力。生理测试显示出对溶解无机氮浓度的不同耐受极限,并证实了该属通常的耐寒性质。此外,对 15 个 Nitrotoga 基因组的比较分析表明,例如,海洋菌株具有独特的基因库,这在其天然栖息地可能具有优势,并证实了在需要铵盐生长的菌株中缺乏同化亚硝酸盐还原的基因。总的来说,这些新的见解大大拓宽了我们对 Nitrotoga 的认识,并阐明了该亚硝酸盐氧化菌群体的代谢可变性、生理极限,从而阐明了其潜在的生态作用。