Suppr超能文献

为周围神经损伤修复设计修复构建体提供信息的框架。

framework to inform the design of repair constructs for peripheral nerve injury repair.

机构信息

UCL Mechanical Engineering, London, UK.

UCL Centre for Nerve Engineering, UK.

出版信息

J R Soc Interface. 2022 Mar;19(188):20210824. doi: 10.1098/rsif.2021.0824. Epub 2022 Mar 2.

Abstract

Peripheral nerve injuries affect millions of people per year and cause loss of sensation and muscle control alongside chronic pain. The most severe injuries are treated through a nerve autograft; however, donor site morbidity and poor outcomes mean alternatives are required. One option is to engineer nerve replacement tissues to provide a supportive microenvironment to encourage nerve regeneration as an alternative to nerve grafts. Currently, progress is hampered due to a lack of consensus on how to arrange materials and cells in space to maximize rate of regeneration. This is compounded by a reliance on experimental testing, which precludes extensive investigations of multiple parameters due to time and cost limitations. Here, a computational framework is proposed to simulate the growth of repairing neurites, captured using a random walk approach and parameterized against literature data. The framework is applied to a specific scenario where the engineered tissue comprises a collagen hydrogel with embedded biomaterial fibres. The size and number of fibres are optimized to maximize neurite regrowth, and the robustness of model predictions is tested through sensitivity analyses. The approach provides an tool to inform the design of engineered replacement tissues, with the opportunity for further development to multi-cue environments.

摘要

周围神经损伤每年影响数百万人,导致感觉和肌肉控制丧失以及慢性疼痛。最严重的损伤通过神经自体移植物治疗;然而,供体部位发病率和不良结果意味着需要替代方案。一种选择是工程化神经替代组织,以提供支持性的微环境,作为神经移植物的替代物来促进神经再生。目前,由于缺乏如何在空间中安排材料和细胞以最大程度地提高再生率的共识,进展受到阻碍。这是由于对实验测试的依赖造成的,由于时间和成本的限制,实验测试排除了对多个参数的广泛研究。在这里,提出了一个计算框架来模拟修复神经突的生长,使用随机游走方法捕获,并根据文献数据进行参数化。该框架应用于一个特定的场景,其中工程化组织由嵌入生物材料纤维的胶原水凝胶组成。优化纤维的大小和数量以最大程度地促进神经突再生,并通过敏感性分析测试模型预测的稳健性。该方法提供了一种工具,可以为工程化替代组织的设计提供信息,并为多线索环境提供进一步发展的机会。

相似文献

1
framework to inform the design of repair constructs for peripheral nerve injury repair.
J R Soc Interface. 2022 Mar;19(188):20210824. doi: 10.1098/rsif.2021.0824. Epub 2022 Mar 2.
2
Repairing Peripheral Nerves: Is there a Role for Carbon Nanotubes?
Adv Healthc Mater. 2016 Jun;5(11):1253-71. doi: 10.1002/adhm.201500864. Epub 2016 Mar 29.
3
Modelling-informed cell-seeded nerve repair construct designs for treating peripheral nerve injuries.
PLoS Comput Biol. 2021 Jul 8;17(7):e1009142. doi: 10.1371/journal.pcbi.1009142. eCollection 2021 Jul.
4
Aligned electrospun nerve conduits with electrical activity as a strategy for peripheral nerve regeneration.
Artif Organs. 2021 Aug;45(8):813-818. doi: 10.1111/aor.13942. Epub 2021 Apr 1.
5
Nerve repair by means of tubulization: past, present, future.
J Reconstr Microsurg. 2013 Mar;29(3):149-64. doi: 10.1055/s-0032-1333316. Epub 2013 Jan 9.
6
A Shock to the (Nervous) System: Bioelectricity Within Peripheral Nerve Tissue Engineering.
Tissue Eng Part B Rev. 2022 Oct;28(5):1137-1150. doi: 10.1089/ten.TEB.2021.0159. Epub 2022 Apr 4.
8
The effect of intraluminal contact mediated guidance signals on axonal mismatch during peripheral nerve repair.
Biomaterials. 2012 Oct;33(28):6660-71. doi: 10.1016/j.biomaterials.2012.06.002. Epub 2012 Jun 25.
9
Nerve allografts and conduits in peripheral nerve repair.
Hand Clin. 2013 Aug;29(3):331-48. doi: 10.1016/j.hcl.2013.04.003.
10
Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair.
Cell Tissue Res. 2021 Feb;383(2):617-644. doi: 10.1007/s00441-020-03301-x. Epub 2020 Nov 17.

引用本文的文献

1
Perspectives on optimizing local delivery of drugs to peripheral nerves using mathematical models.
WIREs Mech Dis. 2023 Mar;15(2):e1593. doi: 10.1002/wsbm.1593. Epub 2023 Jan 9.

本文引用的文献

1
Combining and models to inform cell seeding strategies in tissue engineering.
J R Soc Interface. 2020 Mar;17(164):20190801. doi: 10.1098/rsif.2019.0801. Epub 2020 Mar 25.
2
Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit.
Front Bioeng Biotechnol. 2019 Nov 22;7:337. doi: 10.3389/fbioe.2019.00337. eCollection 2019.
3
Mathematical modelling of cell migration: stiffness dependent jump rates result in durotaxis.
J Math Biol. 2019 Jun;78(7):2289-2315. doi: 10.1007/s00285-019-01344-5. Epub 2019 Apr 10.
4
A stochastic framework to model axon interactions within growing neuronal populations.
PLoS Comput Biol. 2018 Dec 3;14(12):e1006627. doi: 10.1371/journal.pcbi.1006627. eCollection 2018 Dec.
6
Repair, protection and regeneration of peripheral nerve injury.
Neural Regen Res. 2015 Nov;10(11):1777-98. doi: 10.4103/1673-5374.170301.
7
Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network.
PLoS Comput Biol. 2015 Oct 5;11(10):e1004535. doi: 10.1371/journal.pcbi.1004535. eCollection 2015 Oct.
8
Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro.
PLoS Comput Biol. 2014 Aug 14;10(8):e1003774. doi: 10.1371/journal.pcbi.1003774. eCollection 2014 Aug.
9
Advances in peripheral nerve regeneration.
Nat Rev Neurol. 2013 Dec;9(12):668-76. doi: 10.1038/nrneurol.2013.227. Epub 2013 Nov 12.
10
Engineered neural tissue for peripheral nerve repair.
Biomaterials. 2013 Oct;34(30):7335-43. doi: 10.1016/j.biomaterials.2013.06.025. Epub 2013 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验