Tomescu Alexandru M F, Rothwell Gar W
Department of Biological Sciences, California Polytechnic State University Humboldt, Arcata, CA, 95521, USA.
Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA.
Evodevo. 2022 Mar 2;13(1):8. doi: 10.1186/s13227-022-00192-7.
Fossils constitute the principal repository of data that allow for independent tests of hypotheses of biological evolution derived from observations of the extant biota. Traditionally, transformational series of structure, consisting of sequences of fossils of the same lineage through time, have been employed to reconstruct and interpret morphological evolution. More recently, a move toward an updated paradigm was fueled by the deliberate integration of developmental thinking in the inclusion of fossils in reconstruction of morphological evolution. The vehicle for this is provided by structural fingerprints-recognizable morphological and anatomical structures generated by (and reflective of) the deployment of specific genes and regulatory pathways during development. Furthermore, because the regulation of plant development is both modular and hierarchical in nature, combining structural fingerprints recognized in the fossil record with our understanding of the developmental regulation of those structures produces a powerful tool for understanding plant evolution. This is particularly true when the systematic distribution of specific developmental regulatory mechanisms and modules is viewed within an evolutionary (paleo-evo-devo) framework. Here, we discuss several advances in understanding the processes and patterns of evolution, achieved by tracking structural fingerprints with their underlying regulatory modules across lineages, living and fossil: the role of polar auxin regulation in the cellular patterning of secondary xylem and the parallel evolution of arborescence in lycophytes and seed plants; the morphology and life history of early polysporangiophytes and tracheophytes; the role of modularity in the parallel evolution of leaves in euphyllophytes; leaf meristematic activity and the parallel evolution of venation patterns among euphyllophytes; mosaic deployment of regulatory modules and the diverse modes of secondary growth of euphyllophytes; modularity and hierarchy in developmental regulation and the evolution of equisetalean reproductive morphology. More generally, inclusion of plant fossils in the evo-devo paradigm has informed discussions on the evolution of growth patterns and growth responses, sporophyte body plans and their homology, sequences of character evolution, and the evolution of reproductive systems.
化石构成了数据的主要储存库,这些数据能够对基于现存生物群观察得出的生物进化假说进行独立检验。传统上,由同一谱系化石随时间形成的序列所构成的结构转变系列,已被用于重建和解释形态演化。最近,在形态演化重建中纳入化石时,通过有意整合发育学思想,推动了向更新范式的转变。实现这一转变的工具是结构指纹——在发育过程中由特定基因和调控途径的部署产生(并反映其特征)的可识别的形态和解剖结构。此外,由于植物发育的调控本质上既是模块化的又是分层的,将化石记录中识别出的结构指纹与我们对这些结构的发育调控的理解相结合,产生了一个理解植物进化的强大工具。当在进化(古进化发育生物学)框架内审视特定发育调控机制和模块的系统分布时,情况尤其如此。在这里,我们讨论通过跨谱系(现存和化石)追踪结构指纹及其潜在调控模块,在理解进化过程和模式方面取得的一些进展:极性生长素调控在次生木质部细胞模式形成中的作用,以及石松类植物和种子植物中树木状形态的平行进化;早期多孢子植物和维管植物的形态和生活史;模块性在真叶植物叶片平行进化中的作用;叶分生组织活动以及真叶植物叶脉模式的平行进化;调控模块的镶嵌式部署以及真叶植物次生生长的多种模式;发育调控中的模块性和层级性以及木贼类植物生殖形态的进化。更一般地说,将植物化石纳入进化发育生物学范式,为关于生长模式和生长反应的进化、孢子体身体结构及其同源性、性状进化序列以及生殖系统进化的讨论提供了信息。