McCabe Megan V, Van Citters Douglas W, Chapman Ryan M
Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA.
University of Rhode Island, Kingston, Rhode Island, USA.
Comput Methods Biomech Biomed Engin. 2023 Jan;26(1):1-11. doi: 10.1080/10255842.2022.2044028. Epub 2022 Mar 3.
Quantifying hip angles/moments during gait is critical for improving hip pathology diagnostic and treatment methods. Recent work has validated approaches combining wearables with artificial neural networks (ANNs) for cheaper, portable hip joint angle/moment computation. This study developed a Wearable-ANN approach for calculating hip joint angles/moments during walking in the sagittal/frontal planes with data from 17 healthy subjects, leveraging one shin-mounted inertial measurement unit (IMU) and a force-measuring insole for data capture. Compared to the benchmark approach, a two hidden layer ANN (n = 5 nodes per layer) achieved an average rRMSE = 15% and R=0.85 across outputs, subjects and training rounds.
量化步态期间的髋关节角度/力矩对于改进髋关节病理学诊断和治疗方法至关重要。最近的研究工作已经验证了将可穿戴设备与人工神经网络(ANN)相结合的方法,用于更廉价、便携的髋关节角度/力矩计算。本研究开发了一种可穿戴-ANN方法,利用来自17名健康受试者的数据,在矢状面/额状面行走过程中计算髋关节角度/力矩,利用一个安装在小腿上的惯性测量单元(IMU)和一个测力鞋垫进行数据采集。与基准方法相比,一个具有两个隐藏层的人工神经网络(每层n = 5个节点)在所有输出、受试者和训练轮次中实现了平均相对均方根误差(rRMSE)= 15%,相关系数(R)= 0.85。