Mori Shoko, Nomura Kaoru, Fujikawa Kohki, Osawa Tsukiho, Shionyu Masafumi, Yoda Takao, Shirai Tsuyoshi, Tsuda Shugo, Yoshizawa-Kumagaye Kumiko, Masuda Shun, Nishio Hideki, Yoshiya Taku, Suzuki Sonomi, Muramoto Maki, Nishiyama Ken-Ichi, Shimamoto Keiko
Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
ACS Chem Biol. 2022 Mar 18;17(3):609-618. doi: 10.1021/acschembio.1c00882. Epub 2022 Mar 3.
Inducing newly synthesized proteins to appropriate locations is an indispensable biological function in every organism. Integration of proteins into biomembranes in is mediated by proteinaceous factors, such as Sec translocons and an insertase YidC. Additionally, a glycolipid named MPIase (membrane protein integrase), composed of a long sugar chain and pyrophospholipid, was proven essential for membrane protein integration. We reported that a synthesized minimal unit of MPIase possessing only one trisaccharide, mini-MPIase-3, involves an essential structure for the integration activity. Here, to elucidate integration mechanisms using MPIase, we analyzed intermolecular interactions of MPIase or its synthetic analogs with a model substrate, the Pf3 coat protein, using physicochemical methods. Surface plasmon resonance (SPR) analyses revealed the importance of a pyrophosphate for affinity to the Pf3 coat protein. Compared with mini-MPIase-3, natural MPIase showed faster association and dissociation due to its long sugar chain despite the slight difference in affinity. To focus on more detailed MPIase substructures, we performed docking simulations and saturation transfer difference-nuclear magnetic resonance. These experiments yielded that the 6--acetyl group on glucosamine and the phosphate of MPIase play important roles leading to interactions with the Pf3 coat protein. The high affinity of MPIase to the hydrophobic region and the basic amino acid residues of the protein was suggested by docking simulations and proven experimentally by SPR using protein mutants devoid of target regions. These results demonstrated the direct interactions of MPIase with a substrate protein and revealed detailed mechanisms of membrane protein integration.
引导新合成的蛋白质到达合适的位置是每个生物体中不可或缺的生物学功能。蛋白质整合到生物膜中是由蛋白质因子介导的,如Sec转运体和插入酶YidC。此外,一种由长糖链和焦磷酸脂组成的名为MPIase(膜蛋白整合酶)的糖脂,被证明对膜蛋白整合至关重要。我们报道,仅含有一个三糖的MPIase合成最小单元mini-MPIase-3,具有整合活性所必需的结构。在这里,为了阐明使用MPIase的整合机制,我们使用物理化学方法分析了MPIase或其合成类似物与模型底物Pf3外壳蛋白之间的分子间相互作用。表面等离子体共振(SPR)分析揭示了焦磷酸对于与Pf3外壳蛋白亲和力的重要性。与mini-MPIase-3相比,天然MPIase由于其长糖链,尽管亲和力略有差异,但显示出更快的结合和解离。为了关注更详细的MPIase亚结构,我们进行了对接模拟和饱和转移差异核磁共振。这些实验表明,MPIase上氨基葡萄糖的6-乙酰基和磷酸在与Pf3外壳蛋白的相互作用中起重要作用。对接模拟表明MPIase对蛋白质的疏水区域和碱性氨基酸残基具有高亲和力,并通过使用缺乏目标区域的蛋白质突变体的SPR实验得到证实。这些结果证明了MPIase与底物蛋白的直接相互作用,并揭示了膜蛋白整合的详细机制。