Suppr超能文献

激发态 N 原子在低温等离子体中将芳烃转化为 -杂环。

Excited-State N Atoms Transform Aromatic Hydrocarbons into -Heterocycles in Low-Temperature Plasmas.

机构信息

Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, 8093 Zürich, Switzerland.

Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117, United States.

出版信息

J Phys Chem A. 2022 Mar 17;126(10):1743-1754. doi: 10.1021/acs.jpca.1c10657. Epub 2022 Mar 3.

Abstract

The direct formation of -heterocycles from aromatic hydrocarbons has been observed in nitrogen-based low-temperature plasmas; the mechanism of this unusual nitrogen-fixation reaction is the topic of this paper. We used homologous aromatic compounds to study their reaction with reactive nitrogen species (RNS) in a dielectric barrier discharge ionization (DBDI) source. Toluene (CH) served as a model compound to study the reaction in detail, which leads to the formation of two major products at "high" plasma voltage: a nitrogen-replacement product yielding protonated methylpyridine (CHN) and a protonated nitrogen-addition (CHN) product. We complemented those studies by a series of experiments probing the potential mechanism. Using a series of selected-ion flow tube experiments, we found that N, N, and N react with toluene to form a small abundance of the -addition product, while N(S) reacted with toluene cations to form a fragment ion. We created a model for the RNS in the plasma using variable electron and neutral density attachment mass spectrometry in a flowing afterglow Langmuir probe apparatus. These experiments suggested that excited-state nitrogen atoms could be responsible for the -replacement product. Density functional theory calculations confirmed that the reaction of excited-state nitrogen N(P) and N(D) with toluene ions can directly form protonated methylpyridine, ejecting a carbon atom from the aromatic ring. N(P) is responsible for this reaction in our DBDI source as it has a sufficient lifetime in the plasma and was detected by optical emission spectroscopy measurements, showing an increasing intensity of N(P) with increasing voltage.

摘要

芳香烃在基于氮的低温等离子体中可直接形成杂环,本文研究了这种不寻常固氮反应的机制。我们使用同系芳香族化合物在介质阻挡放电电离(DBDI)源中研究它们与活性氮物种(RNS)的反应。甲苯(CH)作为模型化合物进行详细研究,在“高”等离子体电压下,反应生成两种主要产物:氮取代产物生成质子化甲基吡啶(CHN)和质子化氮加成(CHN)产物。我们通过一系列实验补充了这些研究,以探究潜在的反应机制。使用一系列选定离子流管实验,我们发现 N、N 和 N 与甲苯反应生成少量的加成产物,而 N(S) 与甲苯阳离子反应形成碎片离子。我们使用流动尾迹 Langmuir 探针装置中的可变电子和中性密度附着质谱法,在等离子体中创建了 RNS 模型。这些实验表明,激发态氮原子可能是 -取代产物的原因。密度泛函理论计算证实,激发态氮 N(P) 和 N(D)与甲苯离子的反应可以直接形成质子化甲基吡啶,从芳环中逐出一个碳原子。在我们的 DBDI 源中,N(P) 负责该反应,因为它在等离子体中有足够长的寿命,并通过光发射光谱测量检测到,随着电压的增加,N(P) 的强度增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验