Liu Shuangjun, Huang Xiaofei, Fu Nihang, Li Cheng, Su Zhongnan, Ostadabbas Sarah
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):1106-1118. doi: 10.1109/TPAMI.2022.3155712. Epub 2022 Dec 5.
Computer vision field has achieved great success in interpreting semantic meanings from images, yet its algorithms can be brittle for tasks with adverse vision conditions and the ones suffering from data/label pair limitation. Among these tasks is in-bed human pose monitoring with significant value in many healthcare applications. In-bed pose monitoring in natural settings involves pose estimation in complete darkness or full occlusion. The lack of publicly available in-bed pose datasets hinders the applicability of many successful human pose estimation algorithms for this task. In this paper, we introduce our Simultaneously-collected multimodal Lying Pose (SLP) dataset, which includes in-bed pose images from 109 participants captured using multiple imaging modalities including RGB, long wave infrared (LWIR), depth, and pressure map. We also present a physical hyper parameter tuning strategy for ground truth pose label generation under adverse vision conditions. The SLP design is compatible with the mainstream human pose datasets; therefore, the state-of-the-art 2D pose estimation models can be trained effectively with the SLP data with promising performance as high as 95% at PCKh@0.5 on a single modality. The pose estimation performance of these models can be further improved by including additional modalities through the proposed collaborative scheme.
计算机视觉领域在从图像中解读语义含义方面取得了巨大成功,但其算法在面对不利视觉条件以及受数据/标签对限制的任务时可能较为脆弱。其中一项这样的任务是床上人体姿势监测,在许多医疗保健应用中具有重要价值。自然环境下的床上姿势监测涉及在完全黑暗或完全遮挡的情况下进行姿势估计。缺乏公开可用的床上姿势数据集阻碍了许多成功的人体姿势估计算法在此任务中的适用性。在本文中,我们介绍了我们同时收集的多模态躺卧姿势(SLP)数据集,该数据集包括使用多种成像模态(包括RGB、长波红外(LWIR)、深度和压力图)从109名参与者那里捕获的床上姿势图像。我们还提出了一种在不利视觉条件下生成地面真值姿势标签的物理超参数调整策略。SLP设计与主流人体姿势数据集兼容;因此,最先进的二维姿势估计模型可以使用SLP数据进行有效训练,在单模态下PCKh@0.5时性能有望高达95%。通过所提出的协作方案纳入其他模态,可以进一步提高这些模型的姿势估计性能。