Caporale Alessandra, Bonomo Giovanni Battista, Tani Raffaelli Giulio, Tata Ada Maria, Avallone Bice, Wehrli Felix Werner, Capuani Silvia
NMR and Medical Physics Laboratory, Institute for Complex Systems of National Research Council (CNR-ISC), Rome, Italy.
Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States.
Front Neurosci. 2022 Feb 15;15:797642. doi: 10.3389/fnins.2021.797642. eCollection 2021.
Neural tissue is a hierarchical multiscale system with intracellular and extracellular diffusion compartments at different length scales. The normal diffusion of bulk water in tissues is not able to detect the specific features of a complex system, providing nonlocal, diffusion measurement averaged on a 10-20 μm length scale. Being able to probe tissues with sub-micrometric diffusion length and quantify new local parameters, transient anomalous diffusion (tAD) would dramatically increase the diagnostic potential of diffusion MRI (DMRI) in detecting collective and sub-micro architectural changes of human tissues due to pathological damage. In DMRI, the use of tAD parameters quantified using specific DMRI acquisition protocols and their interpretation has often aroused skepticism. Although the derived formulas may accurately fit experimental diffusion-weighted data, the relationships between the postulated dynamical feature and the underlying geometrical structure remains elusive, or at most only suggestive. This work aimed to elucidate and validate the image contrast and information that can be obtained using the tAD model in white matter (WM) through a direct comparison between different diffusion metrics and histology. Towards this goal, we compared tAD metrics extracted from pure subdiffusion (α-imaging) and super-pseudodiffusion (γ-imaging) in excised mouse spinal cord WM, together with T2 and T2* relaxometry, conventional (normal diffusion-based) diffusion tensor imaging (DTI) and q-space imaging (QSI), with morphologic measures obtained by optical microscopy, to determine which structural and topological characteristics of myelinated axons influenced tAD contrast. Axon diameter (AxDiam), the standard deviation of diameters (SD ), axonal density (AxDens) and effective local density (ELD) were extracted from optical images in several WM tracts. Among all the diffusion parameters obtained at 9.4 T, γ-metrics confirmed a strong dependence on magnetic in-homogeneities quantified by R2* = 1/T2* and showed the strongest associations with AxDiam and ELD. On the other hand, α-metrics showed strong associations with SD and was significantly related to AxDens, suggesting its ability to quantify local heterogeneity degree in neural tissue. These results elucidate the biophysical mechanism underpinning tAD parameters and show the clinical potential of tAD-imaging, considering that both physiologic and pathologic neurodegeneration translate into alterations of WM morphometry and topology.
神经组织是一个具有不同长度尺度的细胞内和细胞外扩散隔室的分层多尺度系统。组织中大量水的正常扩散无法检测复杂系统的特定特征,提供的是在10 - 20μm长度尺度上平均的非局部扩散测量。瞬态反常扩散(tAD)能够以亚微米级的扩散长度探测组织并量化新的局部参数,这将极大地提高扩散磁共振成像(DMRI)在检测由于病理损伤导致的人体组织的集体和亚微观结构变化方面的诊断潜力。在DMRI中,使用通过特定DMRI采集协议量化的tAD参数及其解释常常引起怀疑。尽管推导的公式可能准确拟合实验扩散加权数据,但假定的动力学特征与潜在几何结构之间的关系仍然难以捉摸,或者最多只是具有启发性。这项工作旨在通过不同扩散指标与组织学之间的直接比较,阐明并验证使用tAD模型在白质(WM)中可获得的图像对比度和信息。为了实现这一目标,我们比较了从切除的小鼠脊髓WM中的纯亚扩散(α成像)和超伪扩散(γ成像)中提取的tAD指标,以及T2和T2弛豫测量、传统的(基于正常扩散的)扩散张量成像(DTI)和q空间成像(QSI),与通过光学显微镜获得的形态学测量结果,以确定有髓轴突的哪些结构和拓扑特征影响tAD对比度。从几个WM束的光学图像中提取轴突直径(AxDiam)、直径标准差(SD)、轴突密度(AxDens)和有效局部密度(ELD)。在9.4T下获得的所有扩散参数中,γ指标证实强烈依赖于由R2 = 1/T2*量化的磁不均匀性,并显示出与AxDiam和ELD的最强关联。另一方面,α指标与SD显示出强关联,并且与AxDens显著相关,表明其能够量化神经组织中的局部异质性程度。这些结果阐明了支撑tAD参数的生物物理机制,并显示了tAD成像的临床潜力,因为生理和病理神经退行性变都会转化为WM形态测量和拓扑结构的改变。