Suppr超能文献

白质扩散磁共振成像模型的设计与验证

Design and validation of diffusion MRI models of white matter.

作者信息

Jelescu Ileana O, Budde Matthew D

机构信息

Centre d'Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Zablocki VA Medical Center, Dept. of Neurosurgery, Medical College Wisconsin, Milwaukee, WI, USA.

出版信息

Front Phys. 2017 Nov;28. doi: 10.3389/fphy.2017.00061. Epub 2017 Nov 28.

Abstract

Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the "biological accuracy" of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.

摘要

扩散磁共振成像可以说是在体表征白质微观结构的首选方法。在典型的扩散编码持续时间内,水分子的位移方便地处于与潜在细胞结构相似的长度尺度上。此外,白质中的水分子在很大程度上是分隔的,这使得受生物启发的分隔扩散模型能够表征和量化真正的生物微观结构。已经提出了大量的白质模型。然而,过度参数化和数学拟合的复杂性促使引入了不同方法之间有所不同的简化假设。这些选择会影响模型参数的定量估计,可能对其生物学准确性和预期的特异性产生不利影响。首先,我们回顾正在使用的生物物理白质模型,并概述其基本假设和适用范围。其次,我们介绍了验证从生物物理模型估计的参数的最新努力。当已知真实情况时,模拟和专用体模有助于评估模型的性能。然而,最大的挑战仍然是验证估计参数的“生物学准确性”。诸如固定组织标本显微镜检查等补充技术有助于对白质纤维取向和密度的估计进行直接比较。然而,验证分隔扩散率仍然具有挑战性,基于磁共振成像的补充技术,如替代扩散编码、特定隔室造影剂和代谢物,已被用于验证扩散模型。最后,白质损伤和疾病对建模提出了额外的挑战,并对此进行了讨论。本综述旨在概述模型的当前状态及其验证情况,并激发该领域的进一步研究,以解决剩余的开放性问题并趋向于达成共识。

相似文献

1
Design and validation of diffusion MRI models of white matter.
Front Phys. 2017 Nov;28. doi: 10.3389/fphy.2017.00061. Epub 2017 Nov 28.
3
Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding.
Neuroimage. 2023 Nov 15;282:120338. doi: 10.1016/j.neuroimage.2023.120338. Epub 2023 Aug 19.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
8
9
Challenges for biophysical modeling of microstructure.
J Neurosci Methods. 2020 Oct 1;344:108861. doi: 10.1016/j.jneumeth.2020.108861. Epub 2020 Jul 18.
10
On the potential for mapping apparent neural soma density via a clinically viable diffusion MRI protocol.
Neuroimage. 2021 Oct 1;239:118303. doi: 10.1016/j.neuroimage.2021.118303. Epub 2021 Jun 23.

引用本文的文献

1
Likelihood-free posterior estimation and uncertainty quantification for diffusion MRI models.
Imaging Neurosci (Camb). 2024 Feb 6;2. doi: 10.1162/imag_a_00088. eCollection 2024.
2
Mapping tissue microstructure of brain white matter in vivo in health and disease using diffusion MRI.
Imaging Neurosci (Camb). 2024 Mar 6;2. doi: 10.1162/imag_a_00102. eCollection 2024.
3
Volume electron microscopy in injured rat brain validates white matter microstructure metrics from diffusion MRI.
Imaging Neurosci (Camb). 2024 Jul 2;2. doi: 10.1162/imag_a_00212. eCollection 2024.
5
White matter microstructure alterations in early psychosis and schizophrenia.
Transl Psychiatry. 2025 May 23;15(1):179. doi: 10.1038/s41398-025-03397-1.
6
Engineering clinical translation of OGSE diffusion MRI.
Magn Reson Med. 2025 Sep;94(3):913-936. doi: 10.1002/mrm.30510. Epub 2025 May 7.
7
Three-dimensional fiber orientation mapping of ex vivo human brain at micrometer resolution.
Npj Imaging. 2025;3(1):13. doi: 10.1038/s44303-025-00074-2. Epub 2025 Apr 8.
10
Endometrial cancer tissue features clusterization by kurtosis MRI.
Med Phys. 2025 May;52(5):2898-2908. doi: 10.1002/mp.17718. Epub 2025 Feb 28.

本文引用的文献

1
Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation.
NMR Biomed. 2019 Apr;32(4):e3998. doi: 10.1002/nbm.3998. Epub 2018 Oct 15.
2
Intra- and extra-axonal axial diffusivities in the white matter: Which one is faster?
Neuroimage. 2018 Nov 1;181:314-322. doi: 10.1016/j.neuroimage.2018.07.020. Epub 2018 Jul 11.
3
TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T relaxation times.
Neuroimage. 2018 Nov 15;182:360-369. doi: 10.1016/j.neuroimage.2017.09.030. Epub 2017 Sep 19.
4
Diffusion time dependence of microstructural parameters in fixed spinal cord.
Neuroimage. 2018 Nov 15;182:329-342. doi: 10.1016/j.neuroimage.2017.08.039. Epub 2017 Aug 14.
6
Sensitivity of multi-shell NODDI to multiple sclerosis white matter changes: a pilot study.
Funct Neurol. 2017 Apr/Jun;32(2):97-101. doi: 10.11138/fneur/2017.32.2.097.
7
Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging.
Neuroimage. 2017 Aug 15;157:561-574. doi: 10.1016/j.neuroimage.2017.06.001. Epub 2017 Jun 8.
8
ApoE influences regional white-matter axonal density loss in Alzheimer's disease.
Neurobiol Aging. 2017 Sep;57:8-17. doi: 10.1016/j.neurobiolaging.2017.04.021. Epub 2017 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验