Sánchez Triviño Cesar Adolfo, Landinez Maria Paula, Duran Sara, Gomez María Del Pilar, Nasi Enrico
Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.
Centro Internacional de Física, Universidad Nacional de Colombia, Bogotá, Colombia.
Front Cell Neurosci. 2022 Feb 15;16:838939. doi: 10.3389/fncel.2022.838939. eCollection 2022.
Although lithium has long been one of the most widely used pharmacological agents in psychiatry, its mechanisms of action at the cellular and molecular levels remain poorly understood. One of the targets of Li is the phosphoinositide pathway, but whereas the impact of Li on inositol lipid metabolism is well documented, information on physiological effects at the cellular level is lacking. We examined in two mammalian cell lines the effect of acute Li exposure on the mobilization of internal Ca and phospholipase C (PLC)-dependent membrane conductances. We first corroborated by Western blots and immunofluorescence in HEK293 cells the presence of key signaling elements of a muscarinic PLC pathway (M1AchR, G, PLC-β1, and IPRs). Stimulation with carbachol evoked a dose-dependent mobilization of Ca, as determined with fluorescent indicators. This was due to release from internal stores and proved susceptible to the PLC antagonist U73122. Li exposure reproducibly potentiated the Ca response in a concentration-dependent manner extending to the low millimolar range. To broaden those observations to a neuronal context and probe potential Li modulation of electrical signaling, we next examined the cell line SHsy5y. We replicated the potentiating effects of Li on the mobilization of internal Ca, and, after characterizing the basic properties of the electrical response to cholinergic stimulation, we also demonstrated an equally robust upregulation of muscarinic membrane currents. Finally, by directly stimulating the signaling pathway at different links downstream of the receptor, the site of action of the observed Li effects could be narrowed down to the G protein and its interaction with PLC-β. These observations document a modulation of G/PLC/IP-mediated signaling by acute exposure to lithium, reflected in distinct physiological changes in cellular responses.
尽管锂长期以来一直是精神病学中使用最广泛的药物之一,但其在细胞和分子水平的作用机制仍知之甚少。锂的作用靶点之一是磷酸肌醇途径,虽然锂对肌醇脂质代谢的影响已有充分记录,但在细胞水平上的生理效应信息却很缺乏。我们在两种哺乳动物细胞系中研究了急性锂暴露对细胞内钙动员和磷脂酶C(PLC)依赖性膜电导的影响。我们首先通过蛋白质免疫印迹法和免疫荧光法在人胚肾293(HEK293)细胞中证实了毒蕈碱型PLC途径的关键信号元件(M1型乙酰胆碱受体、G蛋白、PLC-β1和肌醇1,4,5-三磷酸受体)的存在。用卡巴胆碱刺激可引起荧光指示剂测定的剂量依赖性钙动员。这是由于细胞内储存钙的释放,并且对PLC拮抗剂U73122敏感。锂暴露可重复性地以浓度依赖性方式增强钙反应,这种增强作用可延伸至低毫摩尔范围。为了将这些观察结果扩展到神经元环境,并探究锂对电信号的潜在调节作用,我们接下来研究了SHsy5y细胞系。我们重现了锂对细胞内钙动员的增强作用,并且在表征了对胆碱能刺激的电反应的基本特性后,我们还证明了毒蕈碱型膜电流同样显著上调。最后,通过在受体下游的不同环节直接刺激信号通路,观察到的锂效应的作用位点可以缩小到G蛋白及其与PLC-β的相互作用。这些观察结果证明了急性锂暴露对G/PLC/肌醇1,4,5-三磷酸介导的信号传导的调节作用,这反映在细胞反应的明显生理变化中。