Billups Daniela, Billups Brian, Challiss R A John, Nahorski Stefan R
Department of Cell Physiology and Pharmacology, Medical Sciences Building, University of Leicester, Leicester LE1 9HN, United Kingdom.
J Neurosci. 2006 Sep 27;26(39):9983-95. doi: 10.1523/JNEUROSCI.2773-06.2006.
Gq-protein-coupled receptors (GqPCRs) are widely distributed in the CNS and play fundamental roles in a variety of neuronal processes. Their activation results in phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and Ca2+ release from intracellular stores via the phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3) signaling pathway. Because early GqPCR signaling events occur at the plasma membrane of neurons, they might be influenced by changes in membrane potential. In this study, we use combined patch-clamp and imaging methods to investigate whether membrane potential changes can modulate GqPCR signaling in neurons. Our results demonstrate that GqPCR signaling in the human neuronal cell line SH-SY5Y and in rat cerebellar granule neurons is directly sensitive to changes in membrane potential, even in the absence of extracellular Ca2+. Depolarization has a bidirectional effect on GqPCR signaling, potentiating thapsigargin-sensitive Ca2+ responses to muscarinic receptor activation but attenuating those mediated by bradykinin receptors. The depolarization-evoked potentiation of the muscarinic signaling is graded, bipolar, non-inactivating, and with no apparent upper limit, ruling out traditional voltage-gated ion channels as the primary voltage sensors. Flash photolysis of caged IP3/GPIP2 (glycerophosphoryl-myo-inositol 4,5-bisphosphate) places the voltage sensor before the level of the Ca2+ store, and measurements using the fluorescent bioprobe eGFP-PH(PLCdelta) (enhanced green fluorescent protein-pleckstrin homology domain-PLCdelta) directly demonstrate that voltage affects muscarinic signaling at the level of the IP3 production pathway. The sensitivity of GqPCR IP3 signaling in neurons to voltage itself may represent a fundamental mechanism by which ionotropic signals can shape metabotropic receptor activity in neurons and influence processes such as synaptic plasticity in which the detection of coincident signals is crucial.
Gq蛋白偶联受体(GqPCRs)广泛分布于中枢神经系统,并在多种神经元过程中发挥重要作用。它们的激活会导致磷脂酰肌醇4,5-二磷酸(PIP2)水解,并通过磷脂酶C(PLC)-肌醇1,4,5-三磷酸(IP3)信号通路从细胞内储存中释放Ca2+。由于早期GqPCR信号事件发生在神经元的质膜上,它们可能会受到膜电位变化的影响。在本研究中,我们使用膜片钳和成像相结合的方法来研究膜电位变化是否能调节神经元中的GqPCR信号。我们的结果表明,在人类神经元细胞系SH-SY5Y和大鼠小脑颗粒神经元中,即使在没有细胞外Ca2+的情况下,GqPCR信号也直接对膜电位变化敏感。去极化对GqPCR信号有双向影响,增强了毒胡萝卜素敏感的Ca2+对毒蕈碱受体激活的反应,但减弱了缓激肽受体介导的反应。毒蕈碱信号的去极化诱发增强是分级的、双相的、非失活的,且没有明显的上限,排除了传统电压门控离子通道作为主要电压传感器的可能性。笼锁IP3/甘油磷酸肌醇4,5-二磷酸(GPIP2)的闪光光解将电压传感器置于Ca2+储存水平之前,使用荧光生物探针增强绿色荧光蛋白-普列克底物蛋白同源结构域-PLCδ(eGFP-PH(PLCdelta))的测量直接表明,电压在IP3产生途径水平上影响毒蕈碱信号。神经元中GqPCR IP3信号对电压本身的敏感性可能代表了一种基本机制,通过该机制离子型信号可以塑造神经元中的代谢型受体活性,并影响诸如突触可塑性等过程,在这些过程中同时信号的检测至关重要。