Suppr超能文献

一种用于预测部分肾切除术后个性化新基线功能结局的综合列线图的开发与验证

Development and validation of an integrated nomogram to predict personalized new baseline functional outcomes after partial nephrectomy.

作者信息

Jin Dachun, Luo Yong, Zhu Hailin, Li Yaoming, Huang Zaoming, Zhang Yao, Zhang Jun, Jiang Jun

机构信息

Department of Urology, Institute of Surgery Research, Daping Hospital/Army Medical Center, Army Medical University, Chongqing, China.

出版信息

Transl Androl Urol. 2022 Jan;11(1):9-19. doi: 10.21037/tau-21-952.

Abstract

BACKGROUND

The prediction of new baseline renal function after partial nephrectomy (PN) has important clinical implications. This study aimed to establish a precise personalized nomogram integrating pre-, intra- and post-operative variables to predict new baseline function after PN.

METHODS

This nomogram was constructed based on 213 consecutive PN cases at a large-volume institution from 2014 to 2017 and externally validated by a prospective cohort from January to December 2018 at the same institution. Multivariate cox regression and logistic least absolute shrinkage and selection operator (LASSO) regression were used to select predictors. The performance of the nomogram was assessed by the concordance index (C-index), calibration plot, decision curve analysis and Kaplan-Meier plot.

RESULTS

The average drop percent of the estimated glomerular filtration rate (eGFR) was -8.6% (-12.3%, -7.2%). Multivariate Cox regression analysis and LASSO regression revealed that age, baseline eGFR, RENAL nephrometry score, ischemia time, and AKI were independent predictive factors. These five factors were subsequently incorporated to establish an integrated nomogram, with a C-index of 0.910, excellent calibration plot and net clinical benefit. An external validation of 67 patients showed a C-index of 0.801, excellent calibration and clinical net benefit.

CONCLUSIONS

Our proposed nomogram based on pre-, intra- and post-operative outcomes accurately predicts personalized new baseline eGFR after PN. The successful personalized prediction of at-risk individuals at an early stage can provide multi-professional consideration and timely management.

摘要

背景

肾部分切除术(PN)后新的基线肾功能预测具有重要的临床意义。本研究旨在建立一个精确的个性化列线图,整合术前、术中和术后变量,以预测PN后的新基线功能。

方法

该列线图基于2014年至2017年在一家大型机构连续进行的213例PN病例构建,并于2018年1月至12月在同一机构通过前瞻性队列进行外部验证。采用多变量cox回归和逻辑最小绝对收缩和选择算子(LASSO)回归来选择预测因素。通过一致性指数(C指数)、校准图、决策曲线分析和Kaplan-Meier图评估列线图的性能。

结果

估计肾小球滤过率(eGFR)的平均下降百分比为-8.6%(-12.3%,-7.2%)。多变量Cox回归分析和LASSO回归显示,年龄、基线eGFR、RENAL肾计量评分、缺血时间和急性肾损伤(AKI)是独立的预测因素。随后将这五个因素纳入,建立了一个综合列线图,C指数为0.910,校准图良好,具有净临床效益。对67例患者的外部验证显示C指数为0.801,校准良好,具有临床净效益。

结论

我们提出的基于术前、术中和术后结果的列线图准确预测了PN后个性化的新基线eGFR。对高危个体的成功早期个性化预测可为多专业考虑和及时管理提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2859/8824813/7e9405c49d1d/tau-11-01-9-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验