Schwieterman Gail D, Hardison Emily A, Eliason Erika J
University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
Curr Res Physiol. 2022 Feb 12;5:109-117. doi: 10.1016/j.crphys.2022.02.002. eCollection 2022.
Although most animals live in complex, thermally variable environments, the impact of this variability on specific physiological systems is still unresolved. The ectotherm heart is known to change in both structure and function to ensure appropriate oxygen delivery under different thermal regimes, but the plasticity of the upper thermal limits of the heart under stable or variable thermal acclimation conditions remains unknown. To investigate the role of thermal variability on cardiac acclimation potential, we acclimated a eurythermal fish, opaleye (), to three static temperature treatments (13, 16, and 19 °C) as well as two oscillating treatments which cycled between maximum and minimum temperatures every 12 h (13-19 °C and 16-22 °C). These temperatures and daily thermal ranges were chosen to mimic the conditions observed in the rocky intertidal environments in Santa Barbara, CA, USA where the fish were collected. We hypothesized that increasing temperature would increase upper thermal limits of the heart, and that variable acclimations would result in broader acute thermal performance curves (TPCs) compared to static acclimations. We measured maximum heart rate during acute warming to determine cardiac thermal performance (i.e., the temperature corresponding to the onset of cardiac arrythmia, the temperature at maximum heart rate, absolute maximum heart rate, and the Arrhenius breakpoint temperature) and construct acute TPCs. Rising static acclimation temperatures increased upper thermal limits but had no impact on peak maximum heart rate. The warmest static temperature did, however, cause a narrowing of the acute TPC. Fish acclimated to variable conditions had the same upper thermal limits compared to fish acclimated to static conditions with the same mean temperature in all metrics of thermal performance. Further, there was no significant broadening of the acute TPC. This study suggests that cardiac plasticity is robust to thermal variation in this eurythermal fish.
尽管大多数动物生活在复杂的、温度多变的环境中,但这种变异性对特定生理系统的影响仍未得到解决。已知变温动物的心脏在结构和功能上都会发生变化,以确保在不同的热状态下能有适当的氧气输送,但在稳定或可变的热适应条件下,心脏的热上限可塑性仍然未知。为了研究温度变异性对心脏适应潜力的作用,我们将一种广温性鱼类——太平洋骨鳊(Girella nigricans)分别适应三种静态温度处理(13℃、16℃和19℃)以及两种振荡处理,这两种振荡处理每12小时在最高温度和最低温度之间循环(13 - 19℃和16 - 22℃)。选择这些温度和每日温度范围是为了模拟在美国加利福尼亚州圣巴巴拉的岩石潮间带环境中观察到的条件,该鱼类就是在那里采集的。我们假设升高温度会提高心脏的热上限,并且与静态适应相比,可变适应会导致更宽的急性热性能曲线(TPC)。我们在急性升温过程中测量了最大心率,以确定心脏的热性能(即对应心律失常开始的温度、最大心率时的温度、绝对最大心率以及阿累尼乌斯断点温度)并构建急性TPC。静态适应温度升高会提高热上限,但对峰值最大心率没有影响。然而,最热的静态温度确实导致急性TPC变窄。在所有热性能指标方面,与适应相同平均温度的静态条件的鱼类相比,适应可变条件的鱼类具有相同的热上限。此外,急性TPC没有显著变宽。这项研究表明,在这种广温性鱼类中,心脏可塑性对温度变化具有很强的适应性。