Wan Wen, Wickramaratne Darshana, Dreher Paul, Harsh Rishav, Mazin Igor I, Ugeda Miguel M
Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, San Sebastián, 20018, Spain.
Center for Computational Materials Science, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
Adv Mater. 2022 Jul;34(26):e2200492. doi: 10.1002/adma.202200492. Epub 2022 May 17.
Transition metal dichalcogenides offer unprecedented versatility to engineer 2D materials with tailored properties to explore novel structural and electronic phase transitions. In this work, the atomic-scale evolution of the electronic ground state of a monolayer of Nb Mo Se across the entire alloy composition range (0 < δ < 1) is investigated using low-temperature (300 mK) scanning tunneling microscopy and spectroscopy (STM/STS). In particular, the atomic and electronic structure of this 2D alloy throughout the metal to semiconductor transition (monolayer NbSe to MoSe ) is studied. The measurements enable extraction of the effective doping of Mo atoms, the bandgap evolution and the band shifts, which are monotonic with δ. Furthermore, it is demonstrated that collective electronic phases (charge density wave and superconductivity) are remarkably robust against disorder and further shown that the superconducting T changes non-monotonically with doping. This contrasting behavior in the normal and superconducting state is explained using first-principles calculations. Mo doping is shown to decrease the density of states at the Fermi level and the magnitude of pair-breaking spin fluctuations as a function of Mo content. These results paint a detailed picture of the electronic structure evolution in 2D TMD alloys, which is of utmost relevance for future 2D materials design.
过渡金属二硫属化物为设计具有定制特性的二维材料以探索新型结构和电子相变提供了前所未有的多功能性。在这项工作中,使用低温(300 mK)扫描隧道显微镜和光谱(STM/STS)研究了单层NbₓMo₁₋ₓSe在整个合金成分范围(0 < δ < 1)内电子基态的原子尺度演化。特别地,研究了这种二维合金在从金属到半导体转变(单层NbSe₂到MoSe₂)过程中的原子和电子结构。这些测量能够提取Mo原子的有效掺杂、带隙演化和能带移动,它们随δ呈单调变化。此外,还证明了集体电子相(电荷密度波和超导性)对无序具有显著的鲁棒性,并且进一步表明超导转变温度T随掺杂呈非单调变化。使用第一性原理计算解释了正常态和超导态下这种截然不同的行为。结果表明,作为Mo含量的函数,Mo掺杂会降低费米能级处的态密度和配对破坏自旋涨落的幅度。这些结果描绘了二维过渡金属二硫属化物合金中电子结构演化的详细图景,这对于未来二维材料的设计至关重要。