Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China.
ACS Appl Mater Interfaces. 2022 Mar 16;14(10):12936-12948. doi: 10.1021/acsami.2c01838. Epub 2022 Mar 4.
Soft-bodied aquatic invertebrates can overcome hydrodynamic resistance and display diverse locomotion modes in response to environmental cues. Exploring the dynamics of locomotion from bioinspired aquatic actuators will broaden the perspective of underwater manipulation of artificial systems in fluidic environments. Here, we report a multilayer soft actuator design based on a light-driven hydrogel and a laser-induced graphene (LIG) actuator, minimizing the effect of the time delay by a monolithic hydrogel-based system while maintaining shape-morphing functionality. Moreover, different time scales in the response of actuator materials enable a real-time desynchronization of energy inputs, holding great potential for applications requiring desynchronized stimulation. This hybrid design principle is ultimately demonstrated with a high-performance aquatic soft actuator possessing an underwater walking speed of 0.81 body length per minute at a relatively low power consumption of 3 W. When integrated with an optical sensor, the soft actuator can sense the variation in light intensity and achieve mediated reciprocal motion. Our proposed locomotion mechanism could inspire other multilayer soft actuators to achieve underwater functionalities at the same spatiotemporal scale. The underwater actuation platform could be used to study locomotion kinematics and control mechanisms that mimic the motion of soft-bodied aquatic organisms.
软质水生无脊椎动物可以克服流体动力阻力,并响应环境线索展示多样化的运动模式。探索生物启发型水下致动器的运动动力学将拓宽在流场环境中对人工系统进行水下操作的视角。在这里,我们报告了一种基于光驱动水凝胶和激光诱导石墨烯 (LIG) 致动器的多层软致动器设计,通过整体基于水凝胶的系统最小化了时间延迟的影响,同时保持了形状变形功能。此外,致动器材料的不同时间尺度响应使能量输入能够实时失步,为需要失步刺激的应用提供了巨大的潜力。这种混合设计原理最终通过具有水下行走速度为 0.81 体长/分钟且相对较低的功率消耗 3 W 的高性能水生软致动器得到证明。当与光学传感器集成时,软致动器可以感测光强的变化并实现介导的往复运动。我们提出的运动机制可以启发其他多层软致动器在相同的时空尺度上实现水下功能。水下致动平台可用于研究模仿软质水生生物运动的运动运动学和控制机制。