Muséum National d'Histoire Naturelle, ISYEB, MNHN, CNRS (UMR 7205), UPMC, EPHE, UA, 55, rue Buffon, F-75231 Paris, France.
IRBio (Institut de Recerca de la Biodiversitat, Universitat de Barcelona), Avda. Diagonal, s/n, 08028 Barcelona, Spain.
Infect Genet Evol. 2022 Jun;100:105262. doi: 10.1016/j.meegid.2022.105262. Epub 2022 Mar 1.
Because parasite data reveal essential information about the behavior and history of their hosts, it is possible to use them as tracers of host evolution. A table built from the analysis of the data contained in the book by Ashford and Crewe "The Parasites of Homo sapiens" allows counting and cross comparing the parasites according to the main descriptors used by the authors: Taxonomic groups, for each group number of parasites species identified in humans; Status, numbers of reported human cases and their dispersion; Geographic distribution, parasite specific richness recorded in biogeographic regions; Habitat, parasite location in or on the human body; Transmission, contamination pathways to man; Hosts, non-human hosts, which have a role in the maintenance of a parasite; Host-specificity status, relative role of man or other hosts in the maintenance of parasite populations. A strong positive correlation is observed between the number of parasites species recorded in humans and the global parasite species richness for each taxonomic group. About 74% of the parasites recorded in humans are rare, sporadic or nowhere common; 10% only are common or abundant worldwide. The Palearctic exhibits the highest parasite species diversity; the Oriental, Nearctic, Neotropical and Aethiopian regions have roughly similar richness values; the Australian Region is the poorest. Earliest domesticated animals, such as dog, cat, cattle or pig, share more parasite species with Humans than tardily domesticated as horse, rabbit or camel. More than one third of our parasites have elected our alimentary canal as a home and about two third are using the digestive tract path for contamination. Time of occupancy of new territories, diversity in feeding habits and commensalism with other animals, widely explain Human particular parasite richness. As suggested by the authors: "There must be few parasitic species which have never had the opportunity to infect a human".
由于寄生虫数据揭示了宿主行为和历史的重要信息,因此可以将其用作宿主进化的示踪剂。通过分析阿什福德和克鲁 (Ashford and Crewe) 的著作《智人的寄生虫》中包含的数据,可以构建一个表格,根据作者使用的主要描述符对寄生虫进行计数和交叉比较:分类群,对于每个群组,确定在人类中发现的寄生虫物种数量;状况,报告的人类病例数量及其分布;地理分布,在生物地理区域记录的寄生虫特有丰富度;栖息地,寄生虫在人体内部或外部的位置;传播途径,人类受到的污染途径;宿主,在维持寄生虫方面起作用的非人类宿主;宿主特异性状态,人类或其他宿主在维持寄生虫种群方面的相对作用。在所记录的人类寄生虫物种数量与每个分类群的全球寄生虫物种丰富度之间观察到强烈的正相关。约 74%的在人类中记录的寄生虫是稀有、零星或无处常见的;仅 10%的寄生虫在全球范围内常见或丰富。古北界表现出最高的寄生虫物种多样性;东洋界、新北界、新热带界和埃塞俄比亚界的丰富度值大致相似;澳大利亚区最为贫瘠。最早被驯化的动物,如狗、猫、牛或猪,与后来被驯化的马、兔或骆驼相比,与人类共享更多的寄生虫物种。超过三分之一的寄生虫选择了我们的消化道作为栖息地,大约三分之二的寄生虫通过消化道途径进行污染。新领土的占领时间、饮食习惯的多样性和与其他动物的共生关系,都可以很好地解释人类寄生虫的丰富度。正如作者所建议的:“几乎没有寄生虫物种从未有机会感染人类”。