Suppr超能文献

人纤溶酶原与烟曲霉烯醇化酶复合物的结构模型。

A structural model of the human plasminogen and Aspergillus fumigatus enolase complex.

机构信息

Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.

Adelaide Proteomics Centre, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.

出版信息

Proteins. 2022 Aug;90(8):1509-1520. doi: 10.1002/prot.26331. Epub 2022 Mar 22.

Abstract

The metabolic enzyme, enolase, plays a crucial role in the cytoplasm where it maintains cellular energy production within the process of glycolysis. The main role of enolase in glycolysis is to convert 2-phosphoglycerate to phosphoenolpyruvate; however, enolase can fulfill roles that deviate from this function. In pathogenic bacteria and fungi, enolase is also located on the cell surface where it functions as a virulence factor. Surface-expressed enolase is a receptor for human plasma proteins, including plasminogen, and this interaction facilitates nutrient acquisition and tissue invasion. A novel approach to developing antifungal drugs is to inhibit the formation of this complex. To better understand the structure of enolase and the interactions that may govern complex formation, we have solved the first X-ray crystal structure of enolase from Aspergillus fumigatus (2.0 Å) and have shown that it preferentially adopts a dimeric quaternary structure using native mass spectrometry. Two additional X-ray crystal structures of A. fumigatus enolase bound to the endogenous substrate 2-phosphoglycerate and product phosphoenolpyruvate were determined and kinetic characterization was carried out to better understand the details of its canonical function. From these data, we have produced a model of the A. fumigatus enolase and human plasminogen complex to provide structural insights into the mechanisms of virulence and aid future development of small molecules or peptidomimetics for antifungal drug design.

摘要

代谢酶烯醇化酶在细胞质中发挥着关键作用,在糖酵解过程中维持细胞的能量产生。烯醇化酶在糖酵解中的主要作用是将 2-磷酸甘油酸转化为磷酸烯醇丙酮酸;然而,烯醇化酶可以发挥偏离此功能的作用。在致病细菌和真菌中,烯醇化酶也位于细胞表面,作为一种毒力因子发挥作用。表面表达的烯醇化酶是人类血浆蛋白(包括纤溶酶原)的受体,这种相互作用促进了营养物质的获取和组织侵袭。开发抗真菌药物的一种新方法是抑制这种复合物的形成。为了更好地了解烯醇化酶的结构以及可能控制复合物形成的相互作用,我们已经解决了烟曲霉烯醇化酶的首个 X 射线晶体结构(2.0Å),并通过天然质谱显示其优先采用二聚体四级结构。还确定了另外两个与内源性底物 2-磷酸甘油酸和产物磷酸烯醇丙酮酸结合的烟曲霉烯醇化酶的 X 射线晶体结构,并进行了动力学表征,以更好地了解其典型功能的细节。根据这些数据,我们构建了烟曲霉烯醇化酶和人纤溶酶原复合物的模型,为毒力机制提供了结构见解,并有助于未来开发用于抗真菌药物设计的小分子或肽模拟物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验