Sorbonne Université, UMR CNRS 8001, LPSM, 75005 Paris, France.
Sorbonne Université, UMR CNRS 8001, LPSM, 75005 Paris, France.
J Neurosci Methods. 2022 Apr 15;372:109550. doi: 10.1016/j.jneumeth.2022.109550. Epub 2022 Mar 2.
In this work, we propose to catch the complexity of the membrane potential's dynamic of a motoneuron between its spikes, taking into account the spikes from other neurons around. Our approach relies on two types of data: extracellular recordings of multiple spikes trains and intracellular recordings of the membrane potential of a central neuron.
We provide a unified framework and a complete pipeline to analyze neuronal activity from data extraction to statistical inference. To the best of our knowledge, this is the first time that a Hawkes-diffusion model is investigated on such complex data. The first step of the proposed procedure is to select a subnetwork of neurons impacting the central neuron using a multivariate Hawkes process. Then we infer a jump-diffusion dynamic in which jumps are driven from a Hawkes process, the occurrences of which correspond to the spike trains of the aforementioned subset of neurons that interact with the central neuron.
From the Hawkes estimation step we recover a small connectivity graph which contains the central neuron, and we show that taking into account this information improves the inference of membrane potential through the proposed jump-diffusion model. A goodness of fit test is applied to validate the relevance of the Hawkes model in such context.
We compare an empirical inference method and two sparse estimation procedures based on the Hawkes assumption for the reconstruction of the connectivity graph using the spike-trains. Then, the Hawkes-diffusion model is competed with the simple diffusion in terms of best fit to describe the behavior of the membrane potential of a central neuron surrounded by a network.
The present method takes advantage of both spike trains and membrane potential to understand the behavior of a fixed neuron. The entire code has been developed and is freely available on GitHub.
在这项工作中,我们建议在神经元的尖峰之间捕捉膜电位动态的复杂性,同时考虑来自周围其他神经元的尖峰。我们的方法依赖于两种类型的数据:多个尖峰序列的细胞外记录和中央神经元膜电位的细胞内记录。
我们提供了一个统一的框架和一个完整的管道,用于从数据提取到统计推断分析神经元活动。据我们所知,这是首次在如此复杂的数据上研究 Hawkes 扩散模型。所提出的过程的第一步是使用多变量 Hawkes 过程选择影响中央神经元的神经元子网络。然后,我们推断出跳跃-扩散动态,其中跳跃是由 Hawkes 过程驱动的,跳跃的发生对应于与中央神经元相互作用的上述子集神经元的尖峰序列。
从 Hawkes 估计步骤中,我们恢复了一个包含中央神经元的小连通图,并且我们表明,考虑到该信息可以通过所提出的跳跃-扩散模型提高对膜电位的推断。应用拟合优度检验来验证 Hawkes 模型在这种情况下的相关性。
我们比较了一种经验推断方法和两种基于 Hawkes 假设的稀疏估计程序,用于使用尖峰序列重建连通图。然后,Hawkes 扩散模型在描述网络包围的中央神经元膜电位行为方面与简单扩散竞争最佳拟合。
本方法利用尖峰序列和膜电位来理解固定神经元的行为。整个代码已经开发完成,并在 GitHub 上免费提供。