Matsushima Kouji, Yang De, Oppenheim Joost J
Division of Molecular Regulation of Inflammatory and Immune Diseases, Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
Cytokine. 2022 May;153:155828. doi: 10.1016/j.cyto.2022.155828. Epub 2022 Mar 2.
Early in the 1980s several laboratories mistakenly reported that partially purified interleukin-1 (IL-1) was chemotactic for neutrophils. However, further investigations by us, revealed that our purified IL-1 did not have neutrophil chemotactic activity and this activity in the LPS-stimulated human monocyte conditioned media could clearly be separated from IL-1 activity on HPLC gel filtration. This motivated Teizo Yoshimura and Kouji Matsushima to purify the monocyte-derived neutrophil chemotactic factor (MDNCF), present in LPS conditioned media and molecularly clone the cDNA for MDNCF. They found that MDNCF protein (later renamed IL-8, and finally termed CXCL8) is first translated as a precursor form consisting of 99 amino acid residues and the signal peptide is then removed, leading to the secretion and processing of biologically active IL-8 of 72 amino acid form (residues 28-99). There are four cysteine residues forming two disulfide linkage and 14 basic amino acid residues which result in a very basic property for the binding of IL-8 to heparan sulfate-proteoglycan. The IL-8 gene consists of 4 exons and 3 introns. IL-8 is produced by various types of cells in inflammation. The 5'-flanking region of IL-8 gene contains several nuclear factor binding sites, and NF-κB in combination with AP-1 or C/EBP synergistically activates IL-8 gene in response to IL-1 and TNFα. Two receptors exist for IL-8, CXCR1 and CXCR2 in humans, which belong to γ subfamily of GTP binding protein (G-protein) coupled rhodopsin-like 7 transmembrane domain receptors. Rodents express CXCR2 and do not produce IL-8, but produce numerous homologues instead. Once IL-8 binds to the receptor, β and γ subunits of G-protein are released from Gα (Gαi2 in neutrophils) and activate PI3Kγ, PLCβ2/β3, PLA2 and PLD. Gαi2 inhibits adenyl cyclase to decrease cAMP levels. Small GTPases Ras/Rac/Rho/cdc42/Rap1, PKC and AKT (PKB) exist down-stream of β and γ subunits and regulate cell adhesion, actin polymerization, membrane protrusion, and eventually cell migration. PLCβ activation generates IP3 and induces Ca mobilization, DAG generation to activate protein kinase C to lead granule exocytosis and respiratory burst. MDNCF was renamed interleukin 8 (IL-8) at the International Symposium on Novel Neutrophil Chemotactic Activating Polypeptides, London, UK in 1989. The discovery of IL-8 prompted us to also purify and molecularly clone the cDNA of MCAF/MCP-1 responsible for monocyte chemotaxis, and other groups to identify a large family of chemotactic cytokines capable of attracting other types of leukocytes. In 1992, most of the investigators contributing to the discovery of this new family of chemotactic cytokines gathered in Baden, Austria and agreed to name this family "chemokines" and subsequently established the CXCL/CCL and CXCR/CCR nomenclature. The discovery of chemokines resulted in solving the long-time enigma concerning the mechanism of cell type specific leukocyte infiltration into inflamed tissues and provided a molecular basis for immune and hematopoietic cell migration and interactions under physiological as well as pathological conditions. To our surprise based on its recently identified multifunctional activities, IL-8 has evolved from a neutrophil chemoattractant to a promising therapeutic target for a wide range of inflammatory and neoplastic diseases. IL-8 was initially characterized as a chemoattractant of neutrophils engaged in acute inflammation and then discovered to also be chemotactic for endothelial cells with a major role in angiogenesis. These two activities of IL-8 foster its stimulatory effect on tumor growth. This is abetted by recent additional discoveries showing that IL-8 has stimulatory effects on stem cells and can therefore directly promote the growth of receptor expressing cancer stem cells. IL-8 by interacting with bone marrow stem/progenitor cells has also the capacity to mobilize and release hematopoietic cells into the peripheral circulation. This includes the mobilization of neutrophilic myeloid-derived suppressor cells (N-MDSC) to infiltrate into tumors and thus further promotes the immune escape of tumors. Finally, the capacity of IL-8 to induce trans-differentiation of epithelial cancer cells into mesenchymal phenotype (EMT) increases the malignancy of tumors by promoting their metastatic spread and resistance to chemotherapeutics and cytotoxic immune cells. These observations have stimulated considerable current efforts to develop receptor antagonists for IL-8 and humanized anti-IL-8 antibody for the therapy of cancer, particularly in combination with immune checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies.
20世纪80年代初,几个实验室错误地报道部分纯化的白细胞介素-1(IL-1)对中性粒细胞有趋化作用。然而,我们进一步研究发现,我们纯化的IL-1没有中性粒细胞趋化活性,并且脂多糖刺激的人单核细胞条件培养基中的这种活性在高效液相色谱凝胶过滤中可以与IL-1活性明显分离。这促使吉村哲三(Teizo Yoshimura)和松岛浩二(Kouji Matsushima)纯化脂多糖条件培养基中存在的单核细胞衍生的中性粒细胞趋化因子(MDNCF),并对MDNCF的cDNA进行分子克隆。他们发现MDNCF蛋白(后来重新命名为IL-8,最终称为CXCL8)最初被翻译为由99个氨基酸残基组成的前体形式,然后信号肽被去除,导致72个氨基酸形式(第28 - 99位残基)的生物活性IL-8分泌和加工。有四个半胱氨酸残基形成两个二硫键,还有14个碱性氨基酸残基,这使得IL-8具有与硫酸乙酰肝素蛋白聚糖结合的非常碱性的特性。IL-8基因由4个外显子和3个内含子组成。IL-8由炎症中的各种细胞产生。IL-8基因的5'侧翼区域包含几个核因子结合位点,并且NF-κB与AP-1或C/EBP结合,协同响应IL-1和TNFα激活IL-8基因。IL-8有两种受体,人类中的CXCR1和CXCR2,它们属于GTP结合蛋白(G蛋白)偶联视紫红质样7跨膜结构域受体的γ亚家族。啮齿动物表达CXCR2且不产生IL-8,但会产生许多同源物。一旦IL-8与受体结合,G蛋白的β和γ亚基从Gα(中性粒细胞中的Gαi2)释放出来并激活PI3Kγ、PLCβ2/β3、PLA2和PLD。Gαi2抑制腺苷酸环化酶以降低cAMP水平。小GTP酶Ras/Rac/Rho/cdc42/Rap1、PKC和AKT(PKB)存在于β和γ亚基的下游,调节细胞黏附、肌动蛋白聚合、膜突出,最终调节细胞迁移。PLCβ激活产生IP3并诱导钙动员、DAG生成以激活蛋白激酶C导致颗粒胞吐和呼吸爆发。1989年在英国伦敦举行的新型中性粒细胞趋化激活多肽国际研讨会上,MDNCF被重新命名为白细胞介素8(IL-8)。IL-8的发现促使我们也纯化并对负责单核细胞趋化的MCAF/MCP-1的cDNA进行分子克隆,并且促使其他研究团队鉴定出一大类能够吸引其他类型白细胞的趋化细胞因子。1992年,大多数参与发现这个新的趋化细胞因子家族的研究人员聚集在奥地利的巴登,同意将这个家族命名为“趋化因子”,随后建立了CXCL/CCL和CXCR/CCR命名法。趋化因子的发现解决了长期以来关于细胞类型特异性白细胞浸润到炎症组织机制的谜团,并为生理和病理条件下免疫和造血细胞的迁移及相互作用提供了分子基础。令我们惊讶的是,基于其最近发现的多功能活性,IL-8已从一种中性粒细胞趋化剂演变为多种炎症和肿瘤性疾病的有前景的治疗靶点。IL-8最初被表征为参与急性炎症的中性粒细胞的趋化剂,随后发现它对内皮细胞也有趋化作用,在内皮细胞中对血管生成起主要作用。IL-8的这两种活性促进了其对肿瘤生长的刺激作用。最近的其他发现进一步支持了这一点,这些发现表明IL-8对干细胞有刺激作用,因此可以直接促进表达受体的癌症干细胞的生长。IL-8通过与骨髓干/祖细胞相互作用,还具有将造血细胞动员并释放到外周循环中的能力。这包括动员嗜中性粒细胞来源的髓源性抑制细胞(N-MDSC)浸润到肿瘤中,从而进一步促进肿瘤的免疫逃逸。最后,IL-8诱导上皮癌细胞向间充质表型(EMT)转分化的能力通过促进肿瘤的转移扩散以及对化疗药物和细胞毒性免疫细胞的抗性,增加了肿瘤的恶性程度。这些观察结果激发了目前为开发IL-8受体拮抗剂和人源化抗IL-8抗体用于癌症治疗所做的大量努力,特别是与免疫检查点抑制剂,如抗PD-1/PD-L1抗体联合使用。