Suppr超能文献

靶向泛素化:解构降解标签。

Site-specific ubiquitination: Deconstructing the degradation tag.

机构信息

Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, 94038, USA.

Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA; QB3 Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA, 94720, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA.

出版信息

Curr Opin Struct Biol. 2022 Apr;73:102345. doi: 10.1016/j.sbi.2022.102345. Epub 2022 Mar 2.

Abstract

Ubiquitin is a small eukaryotic protein so named for its cellular abundance and originally recognized for its role as the posttranslational modification (PTM) "tag" condemning substrates to degradation by the 26S proteasome. Since its discovery in the 1970s, protein ubiquitination has also been identified as a key regulatory feature in dozens of non-degradative cellular processes. This myriad of roles illustrates the versatility of ubiquitin as a PTM; however, understanding the cellular and molecular factors that enable discrimination between degradative versus non-degradative ubiquitination events has been a persistent challenge. Here, we discuss recent advances in uncovering how site-specificity - the exact residue that gets modified - modulates distinct protein fates and cellular outcomes with an emphasis on how ubiquitination site specificity regulates proteasomal degradation. We explore recent advances in structural biology, biophysics, and cell biology that have enabled a broader understanding of the role of ubiquitination in altering the dynamics of the target protein, including implications for the design of targeted protein degradation therapeutics.

摘要

泛素是一种小型真核蛋白,因其在细胞中的丰富性而得名,最初因其作为翻译后修饰 (PTM) “标签”的作用而被识别,该标签将底物标记为通过 26S 蛋白酶体降解。自 20 世纪 70 年代发现以来,蛋白质泛素化也被确定为数十种非降解细胞过程中的关键调节特征。这种多样性的作用说明了泛素作为 PTM 的多功能性;然而,理解使细胞能够区分降解与非降解泛素化事件的细胞和分子因素一直是一个持续的挑战。在这里,我们讨论了揭示特定残基修饰如何调节不同蛋白质命运和细胞结果的最新进展,重点讨论了泛素化位点特异性如何调节蛋白酶体降解。我们探讨了结构生物学、生物物理学和细胞生物学方面的最新进展,这些进展使人们对泛素化在改变靶蛋白动力学中的作用有了更广泛的理解,包括对靶向蛋白质降解治疗药物设计的影响。

相似文献

1
Site-specific ubiquitination: Deconstructing the degradation tag.
Curr Opin Struct Biol. 2022 Apr;73:102345. doi: 10.1016/j.sbi.2022.102345. Epub 2022 Mar 2.
4
Site-specific ubiquitination affects protein energetics and proteasomal degradation.
Nat Chem Biol. 2020 Aug;16(8):866-875. doi: 10.1038/s41589-020-0556-3. Epub 2020 Jun 1.
6
Recognition of Client Proteins by the Proteasome.
Annu Rev Biophys. 2017 May 22;46:149-173. doi: 10.1146/annurev-biophys-070816-033719. Epub 2017 Mar 9.
7
Conventional and unconventional ubiquitination in plant immunity.
Mol Plant Pathol. 2017 Dec;18(9):1313-1330. doi: 10.1111/mpp.12521. Epub 2017 Feb 10.
8
Acetylation modulates the Fanconi anemia pathway by protecting FAAP20 from ubiquitin-mediated proteasomal degradation.
J Biol Chem. 2020 Oct 2;295(40):13887-13901. doi: 10.1074/jbc.RA120.015288. Epub 2020 Aug 6.
9
Ubiquitin-mediated regulation of APE2 protein abundance.
J Biol Chem. 2024 Jun;300(6):107337. doi: 10.1016/j.jbc.2024.107337. Epub 2024 May 4.
10
The complexity of recognition of ubiquitinated substrates by the 26S proteasome.
Biochim Biophys Acta. 2014 Jan;1843(1):86-96. doi: 10.1016/j.bbamcr.2013.07.007. Epub 2013 Jul 18.

引用本文的文献

1
The Role and Pathogenesis of Tau Protein in Alzheimer's Disease.
Biomolecules. 2025 Jun 5;15(6):824. doi: 10.3390/biom15060824.
5
The role of ubiquitin-conjugating enzyme in the process of spermatogenesis.
Reprod Biol Endocrinol. 2024 Aug 28;22(1):110. doi: 10.1186/s12958-024-01282-y.
6
Ubiquitin recruiting chimera: more than just a PROTAC.
Biol Direct. 2024 Jul 9;19(1):55. doi: 10.1186/s13062-024-00497-8.
7
TRIM65 deficiency alleviates renal fibrosis through NUDT21-mediated alternative polyadenylation.
Cell Death Differ. 2024 Nov;31(11):1422-1438. doi: 10.1038/s41418-024-01336-z. Epub 2024 Jun 29.
9
A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple.
Am J Physiol Cell Physiol. 2023 Dec 1;325(6):C1567-C1582. doi: 10.1152/ajpcell.00457.2023. Epub 2023 Nov 13.
10
Dysregulated proteostasis network in neuronal diseases.
Front Cell Dev Biol. 2023 Feb 24;11:1075215. doi: 10.3389/fcell.2023.1075215. eCollection 2023.

本文引用的文献

1
Chemical methods for protein site-specific ubiquitination.
RSC Chem Biol. 2021 Feb 25;2(2):450-467. doi: 10.1039/d0cb00215a. eCollection 2021 Apr 1.
2
Rewiring of the ubiquitinated proteome determines ageing in C. elegans.
Nature. 2021 Aug;596(7871):285-290. doi: 10.1038/s41586-021-03781-z. Epub 2021 Jul 28.
3
PROTACs technology for targeting non-oncoproteins: Advances and perspectives.
Bioorg Chem. 2021 Sep;114:105109. doi: 10.1016/j.bioorg.2021.105109. Epub 2021 Jun 21.
4
Site-specific ubiquitylation acts as a regulator of linker histone H1.
Nat Commun. 2021 Jun 9;12(1):3497. doi: 10.1038/s41467-021-23636-5.
5
Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection.
Nature. 2021 Jun;594(7861):111-116. doi: 10.1038/s41586-021-03566-4. Epub 2021 May 19.
6
The ubiquitin proteoform problem.
Curr Opin Chem Biol. 2021 Aug;63:95-104. doi: 10.1016/j.cbpa.2021.02.015. Epub 2021 Apr 1.
7
Mechanistic basis for ubiquitin modulation of a protein energy landscape.
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2025126118.
8
BRCA1/BARD1 site-specific ubiquitylation of nucleosomal H2A is directed by BARD1.
Nat Struct Mol Biol. 2021 Mar;28(3):268-277. doi: 10.1038/s41594-020-00556-4. Epub 2021 Feb 15.
9
MaxQuant.Live Enables Enhanced Selectivity and Identification of Peptides Modified by Endogenous SUMO and Ubiquitin.
J Proteome Res. 2021 Apr 2;20(4):2042-2055. doi: 10.1021/acs.jproteome.0c00892. Epub 2021 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验