Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720.
QB3 Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2025126118.
Ubiquitin is a common posttranslational modification canonically associated with targeting proteins to the 26S proteasome for degradation and also plays a role in numerous other nondegradative cellular processes. Ubiquitination at certain sites destabilizes the substrate protein, with consequences for proteasomal processing, while ubiquitination at other sites has little energetic effect. How this site specificity-and, by extension, the myriad effects of ubiquitination on substrate proteins-arises remains unknown. Here, we systematically characterize the atomic-level effects of ubiquitination at various sites on a model protein, barstar, using a combination of NMR, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics simulation. We find that, regardless of the site of modification, ubiquitination does not induce large structural rearrangements in the substrate. Destabilizing modifications, however, increase fluctuations from the native state resulting in exposure of the substrate's C terminus. Both of the sites occur in regions of barstar with relatively high conformational flexibility. Nevertheless, destabilization appears to occur through different thermodynamic mechanisms, involving a reduction in entropy in one case and a loss in enthalpy in another. By contrast, ubiquitination at a nondestabilizing site protects the substrate C terminus through intermittent formation of a structural motif with the last three residues of ubiquitin. Thus, the biophysical effects of ubiquitination at a given site depend greatly on local context. Taken together, our results reveal how a single posttranslational modification can generate a broad array of distinct effects, providing a framework to guide the design of proteins and therapeutics with desired degradation and quality control properties.
泛素是一种常见的翻译后修饰,通常与将蛋白质靶向 26S 蛋白酶体进行降解有关,同时在许多其他非降解性细胞过程中也发挥作用。在某些位点的泛素化会使底物蛋白不稳定,从而影响蛋白酶体的加工,而在其他位点的泛素化则几乎没有能量效应。这种位点特异性——以及泛素化对底物蛋白的众多影响——是如何产生的,目前尚不清楚。在这里,我们使用 NMR、氢氘交换质谱和分子动力学模拟相结合的方法,系统地研究了泛素化在模型蛋白barstar 上不同位点的原子水平效应。我们发现,无论修饰位点如何,泛素化都不会导致底物发生大的结构重排。然而,不稳定的修饰会增加与天然状态的波动,导致底物的 C 端暴露。这两个位点都发生在 barstar 具有相对较高构象灵活性的区域。然而,失稳似乎是通过不同的热力学机制发生的,一种情况是熵减少,另一种情况是焓损失。相比之下,在非稳定修饰位点的泛素化通过与泛素的最后三个残基间歇性形成结构模体来保护底物的 C 端。因此,在给定位置的泛素化的生物物理效应在很大程度上取决于局部环境。总之,我们的结果揭示了单一的翻译后修饰如何产生广泛的不同效应,为设计具有所需降解和质量控制特性的蛋白质和治疗药物提供了框架。