Suppr超能文献

肢端黑色素瘤细胞图谱的单细胞特征鉴定出免疫治疗的新靶点。

Single-cell Characterization of the Cellular Landscape of Acral Melanoma Identifies Novel Targets for Immunotherapy.

作者信息

Li Jiannong, Smalley Inna, Chen Zhihua, Wu Jheng-Yu, Phadke Manali S, Teer Jamie K, Nguyen Thanh, Karreth Florian A, Koomen John M, Sarnaik Amod A, Zager Jonathan S, Khushalani Nikhil I, Tarhini Ahmad A, Sondak Vernon K, Rodriguez Paulo C, Messina Jane L, Chen Y Ann, Smalley Keiran S M

机构信息

The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, Tampa, Florida.

The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, Florida.

出版信息

Clin Cancer Res. 2022 May 13;28(10):2131-2146. doi: 10.1158/1078-0432.CCR-21-3145.

Abstract

PURPOSE

Acral melanoma is a rare subtype of melanoma that arises on the non-hair-bearing skin of the palms, soles, and nail beds. In this study, we used single-cell RNA sequencing (scRNA-seq) to map the transcriptional landscape of acral melanoma and identify novel immunotherapeutic targets.

EXPERIMENTAL DESIGN

We performed scRNA-seq on nine clinical specimens (five primary, four metastases) of acral melanoma. Detailed cell type curation was performed, the immune landscapes were mapped, and key results were validated by analysis of The Cancer Genome Atlas (TCGA) and single-cell datasets. Cell-cell interactions were inferred and compared with those in nonacral cutaneous melanoma.

RESULTS

Multiple phenotypic subsets of T cells, natural killer (NK) cells, B cells, macrophages, and dendritic cells with varying levels of activation/exhaustion were identified. A comparison between primary and metastatic acral melanoma identified gene signatures associated with changes in immune responses and metabolism. Acral melanoma was characterized by a lower overall immune infiltrate, fewer effector CD8 T cells and NK cells, and a near-complete absence of γδ T cells compared with nonacral cutaneous melanomas. Immune cells associated with acral melanoma exhibited expression of multiple checkpoints including PD-1, LAG-3, CTLA-4, V-domain immunoglobin suppressor of T cell activation (VISTA), TIGIT, and the Adenosine A2A receptor (ADORA2). VISTA was expressed in 58.3% of myeloid cells and TIGIT was expressed in 22.3% of T/NK cells.

CONCLUSIONS

Acral melanoma has a suppressed immune environment compared with that of cutaneous melanoma from nonacral skin. Expression of multiple, therapeutically tractable immune checkpoints were observed, offering new options for clinical translation.

摘要

目的

肢端黑色素瘤是黑色素瘤的一种罕见亚型,发生于手掌、足底和甲床等无毛皮肤部位。在本研究中,我们使用单细胞RNA测序(scRNA-seq)来描绘肢端黑色素瘤的转录图谱,并确定新的免疫治疗靶点。

实验设计

我们对9例肢端黑色素瘤临床标本(5例原发灶、4例转移灶)进行了scRNA-seq。进行了详细的细胞类型鉴定,绘制了免疫图谱,并通过分析癌症基因组图谱(TCGA)和单细胞数据集对关键结果进行了验证。推断了细胞间相互作用,并与非肢端皮肤黑色素瘤中的相互作用进行了比较。

结果

鉴定出具有不同激活/耗竭水平的T细胞、自然杀伤(NK)细胞、B细胞、巨噬细胞和树突状细胞的多个表型亚群。原发性和转移性肢端黑色素瘤之间的比较确定了与免疫反应和代谢变化相关的基因特征。与非肢端皮肤黑色素瘤相比,肢端黑色素瘤的总体免疫浸润较低,效应性CD8 T细胞和NK细胞较少,且几乎完全没有γδ T细胞。与肢端黑色素瘤相关的免疫细胞表现出多种检查点的表达,包括程序性死亡受体1(PD-1)、淋巴细胞活化基因-3(LAG-3)、细胞毒性T淋巴细胞相关蛋白4(CTLA-4)、T细胞活化V结构域免疫球蛋白抑制因子(VISTA)、T细胞免疫球蛋白和免疫受体酪氨酸抑制基序结构域(TIGIT)以及腺苷A2A受体(ADORA2)。VISTA在58.3%的髓样细胞中表达,TIGIT在22.3%的T/NK细胞中表达。

结论

与非肢端皮肤的皮肤黑色素瘤相比,肢端黑色素瘤的免疫环境受到抑制。观察到多种可用于治疗的免疫检查点的表达,为临床转化提供了新的选择。

相似文献

1
Single-cell Characterization of the Cellular Landscape of Acral Melanoma Identifies Novel Targets for Immunotherapy.
Clin Cancer Res. 2022 May 13;28(10):2131-2146. doi: 10.1158/1078-0432.CCR-21-3145.
3
Metastatic acral melanoma treatment outcomes: a systematic review and meta-analysis.
Melanoma Res. 2021 Oct 1;31(5):482-486. doi: 10.1097/CMR.0000000000000764.
4
Acral melanoma: new insights into the immune and genomic landscape.
Neoplasia. 2023 Dec;46:100947. doi: 10.1016/j.neo.2023.100947. Epub 2023 Oct 31.
5
Single-Cell Characterization of the Immune Microenvironment of Melanoma Brain and Leptomeningeal Metastases.
Clin Cancer Res. 2021 Jul 15;27(14):4109-4125. doi: 10.1158/1078-0432.CCR-21-1694. Epub 2021 May 25.
6
Prognosis of Mucosal, Uveal, Acral, Nonacral Cutaneous, and Unknown Primary Melanoma From the Time of First Metastasis.
Oncologist. 2016 Jul;21(7):848-54. doi: 10.1634/theoncologist.2015-0522. Epub 2016 Jun 10.
7
Immunotherapy Options for Acral Melanoma, A fast-growing but Neglected Malignancy.
Arch Med Res. 2022 Dec;53(8):794-806. doi: 10.1016/j.arcmed.2022.11.008. Epub 2022 Nov 30.
8
Acral melanoma: clinical advances and hope for the future.
Clin Adv Hematol Oncol. 2023 Aug;21(8):400-409.
9
Targeted Genomic Profiling of Acral Melanoma.
J Natl Cancer Inst. 2019 Oct 1;111(10):1068-1077. doi: 10.1093/jnci/djz005.

引用本文的文献

2
USP5-Mediated PD-L1 deubiquitination regulates immunotherapy efficacy in melanoma.
J Transl Med. 2025 Jul 10;23(1):778. doi: 10.1186/s12967-025-06812-9.
3
Single-cell RNA sequencing reveals the role of GTF2F2 in ovarian cancer oncogenesis and progression.
J Ovarian Res. 2025 May 29;18(1):114. doi: 10.1186/s13048-025-01686-3.
7
Expression of the TIGIT axis and the CD39/CD73 purinergic pathway in bone metastasis-derived immune cells.
Cancer Immunol Immunother. 2025 Apr 24;74(6):182. doi: 10.1007/s00262-025-04030-2.
8
Pan-cancer human brain metastases atlas at single-cell resolution.
Cancer Cell. 2025 Jul 14;43(7):1242-1260.e9. doi: 10.1016/j.ccell.2025.03.025. Epub 2025 Apr 10.
10
Alterations in PD-L1 succinylation shape anti-tumor immune responses in melanoma.
Nat Genet. 2025 Mar;57(3):680-693. doi: 10.1038/s41588-025-02077-6. Epub 2025 Mar 11.

本文引用的文献

2
Single-Cell Characterization of the Immune Microenvironment of Melanoma Brain and Leptomeningeal Metastases.
Clin Cancer Res. 2021 Jul 15;27(14):4109-4125. doi: 10.1158/1078-0432.CCR-21-1694. Epub 2021 May 25.
3
A Mutational Survey of Acral Nevi.
JAMA Dermatol. 2021 Jul 1;157(7):831-835. doi: 10.1001/jamadermatol.2021.0793.
4
Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation.
Front Immunol. 2021 Mar 9;12:636568. doi: 10.3389/fimmu.2021.636568. eCollection 2021.
5
Whole-genome sequencing of acral melanoma reveals genomic complexity and diversity.
Nat Commun. 2020 Oct 16;11(1):5259. doi: 10.1038/s41467-020-18988-3.
6
Expression and clinical significance of PD-L1, B7-H3, B7-H4 and VISTA in craniopharyngioma.
J Immunother Cancer. 2020 Sep;8(2). doi: 10.1136/jitc-2019-000406.
7
TIGIT in cancer immunotherapy.
J Immunother Cancer. 2020 Sep;8(2). doi: 10.1136/jitc-2020-000957.
8
Cancer immunotherapy with γδ T cells: many paths ahead of us.
Cell Mol Immunol. 2020 Sep;17(9):925-939. doi: 10.1038/s41423-020-0504-x. Epub 2020 Jul 22.
9
VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy.
J Hematol Oncol. 2020 Jun 29;13(1):83. doi: 10.1186/s13045-020-00917-y.
10
Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma.
Clin Cancer Res. 2020 Jul 15;26(14):3671-3681. doi: 10.1158/1078-0432.CCR-19-3925. Epub 2020 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验