文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

绘制肢端黑色素瘤的单细胞图谱,并分析肿瘤微环境的分子调控网络。

Mapping the single-cell landscape of acral melanoma and analysis of the molecular regulatory network of the tumor microenvironments.

机构信息

Department of Dermatology, The First Medical General Hospital of People's Liberation Army, Beijing, China.

Beijing Institute of Genomics & China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China.

出版信息

Elife. 2022 Jul 27;11:e78616. doi: 10.7554/eLife.78616.


DOI:10.7554/eLife.78616
PMID:35894206
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9398445/
Abstract

Acral melanoma (AM) exhibits a high incidence in Asian patients with melanoma, and it is not well treated with immunotherapy. However, little attention has been paid to the characteristics of the immune microenvironment in AM. Therefore, in this study, we collected clinical samples from Chinese patients with AM and conducted single-cell RNA sequencing to analyze the heterogeneity of its tumor microenvironments (TMEs) and the molecular regulatory network. Our analysis revealed that genes, such as , , , and could drive the deregulation of various TME components. The molecular interaction relationships between TME cells, such as MIF-CD44 and TNFSF9-TNFRSF9, might be an attractive target for developing novel immunotherapeutic agents.

摘要

肢端黑色素瘤(AM)在亚洲黑色素瘤患者中发病率较高,且免疫疗法对此疗效不佳。然而,人们对 AM 肿瘤微环境(TME)的免疫特征关注较少。因此,在本研究中,我们收集了中国 AM 患者的临床样本,并进行了单细胞 RNA 测序,以分析其 TME 的异质性和分子调控网络。我们的分析表明,基因如 、 、 、 等可能驱动各种 TME 成分的失调。MIF-CD44 和 TNFSF9-TNFRSF9 等 TME 细胞的分子相互作用关系可能是开发新型免疫治疗药物的有吸引力的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/86b90a331c2b/elife-78616-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/0b03326b4e26/elife-78616-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/5959b68dee2f/elife-78616-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/6591e4f67c4f/elife-78616-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/6e16b621f922/elife-78616-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/fdd5465a17b8/elife-78616-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/848b3a86ae65/elife-78616-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/befc23de91c6/elife-78616-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/76db115e04a8/elife-78616-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/bfb21c120b78/elife-78616-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/c20585e97536/elife-78616-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/63e9425168d6/elife-78616-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/4d5ff3fc6ac6/elife-78616-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/db10254a8c5f/elife-78616-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/86b90a331c2b/elife-78616-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/0b03326b4e26/elife-78616-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/5959b68dee2f/elife-78616-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/6591e4f67c4f/elife-78616-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/6e16b621f922/elife-78616-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/fdd5465a17b8/elife-78616-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/848b3a86ae65/elife-78616-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/befc23de91c6/elife-78616-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/76db115e04a8/elife-78616-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/bfb21c120b78/elife-78616-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/c20585e97536/elife-78616-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/63e9425168d6/elife-78616-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/4d5ff3fc6ac6/elife-78616-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/db10254a8c5f/elife-78616-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1a/9398445/86b90a331c2b/elife-78616-fig7.jpg

相似文献

[1]
Mapping the single-cell landscape of acral melanoma and analysis of the molecular regulatory network of the tumor microenvironments.

Elife. 2022-7-27

[2]
Identification of tumor-intrinsic drivers of immune exclusion in acral melanoma.

J Immunother Cancer. 2023-10

[3]
Clinical features, molecular pathology, and immune microenvironmental characteristics of acral melanoma.

J Transl Med. 2022-8-16

[4]
Immunotherapy Options for Acral Melanoma, A fast-growing but Neglected Malignancy.

Arch Med Res. 2022-12

[5]
Acral melanoma: new insights into the immune and genomic landscape.

Neoplasia. 2023-12

[6]
Single-cell Characterization of the Cellular Landscape of Acral Melanoma Identifies Novel Targets for Immunotherapy.

Clin Cancer Res. 2022-5-13

[7]
Establishment of a CD8+ T cells-related prognostic risk model for acral melanoma based on single-cell and bulk RNA sequencing.

Skin Res Technol. 2024-8

[8]
Spatial transcriptomic analysis of amelanotic acral melanoma versus pigmented acral melanoma reveals distinct molecular determinants.

Br J Dermatol. 2024-9-18

[9]
Prognostic value of genetic aberrations and tumor immune microenvironment in primary acral melanoma.

J Transl Med. 2023-2-4

[10]
Advanced Acral Melanoma Therapies: Current Status and Future Directions.

Curr Treat Options Oncol. 2022-10

引用本文的文献

[1]
Single-cell transcriptomic landscape deciphers intratumoral heterogeneity and subtypes of acral and mucosal melanoma.

Clin Cancer Res. 2025-4-7

[2]
Inhibition of programmed cell death by melanoma cell subpopulations reveals mechanisms of melanoma metastasis and potential therapeutic targets.

Discov Oncol. 2025-1-20

[3]
Single-cell transcriptome analysis reveals evolving tumour microenvironment induced by immunochemotherapy in nasopharyngeal carcinoma.

Clin Transl Med. 2024-10

[4]
Strongly ROS-Correlated, Time-Dependent, and Selective Antiproliferative Effects of Synthesized Nano Vesicles on BRAF Mutant Melanoma Cells and Their Hyaluronic Acid-Based Hydrogel Formulation.

Int J Mol Sci. 2024-9-19

[5]
Prognostic and therapeutic insights into MIF, DDT, and CD74 in melanoma.

Oncotarget. 2024-7-19

[6]
Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT): Pathways to Tumorigenesis and Therapeutic Opportunities.

Int J Mol Sci. 2024-4-29

[7]
Single-cell sequencing reveals the immune landscape of breast cancer patients with brain metastasis.

Thorac Cancer. 2024-3

[8]
Melanoma Derived Exosomes Amplify Radiotherapy Induced Abscopal Effect via IRF7/I-IFN Axis in Macrophages.

Adv Sci (Weinh). 2024-4

[9]
Single-cell RNA sequencing in melanoma: what have we learned so far?

EBioMedicine. 2024-2

[10]
Decoding the metastatic potential and optimal postoperative adjuvant therapy of melanoma based on metastasis score.

Cell Death Discov. 2023-10-25

本文引用的文献

[1]
Single-cell Characterization of the Cellular Landscape of Acral Melanoma Identifies Novel Targets for Immunotherapy.

Clin Cancer Res. 2022-5-13

[2]
A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade.

Nat Commun. 2021-7-21

[3]
Interpretation of T cell states from single-cell transcriptomics data using reference atlases.

Nat Commun. 2021-5-20

[4]
Inference and analysis of cell-cell communication using CellChat.

Nat Commun. 2021-2-17

[5]
Biologic subtypes of melanoma predict survival benefit of combination anti-PD1+anti-CTLA4 immune checkpoint inhibitors versus anti-PD1 monotherapy.

J Immunother Cancer. 2021-1

[6]
Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes.

Nat Biotechnol. 2021-5

[7]
H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts.

Theranostics. 2021

[8]
Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis.

Elife. 2020-10-7

[9]
Anti-PD1 checkpoint inhibitor therapy in acral melanoma: a multicenter study of 193 Japanese patients.

Ann Oncol. 2020-9

[10]
Regulation of CD137 expression through K-Ras signaling in pancreatic cancer cells.

Cancer Commun (Lond). 2019-7-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索