Suppr超能文献

基于各向异性采集的梯度引导各向同性磁共振成像重建

Gradient-Guided Isotropic MRI Reconstruction from Anisotropic Acquisitions.

作者信息

Sui Yao, Afacan Onur, Jaimes Camilo, Gholipour Ali, Warfield Simon K

机构信息

Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts, United States.

出版信息

IEEE Trans Comput Imaging. 2021;7:1240-1253. doi: 10.1109/tci.2021.3128745. Epub 2021 Nov 17.

Abstract

The trade-off between image resolution, signal-to-noise ratio (SNR), and scan time in any magnetic resonance imaging (MRI) protocol is inevitable and unavoidable. Super-resolution reconstruction (SRR) has been shown effective in mitigating these factors, and thus, has become an important approach in addressing the current limitations of MRI. In this work, we developed a novel, image-based MRI SRR approach based on anisotropic acquisition schemes, which utilizes a new gradient guidance regularization method that guides the high-resolution (HR) reconstruction via a spatial gradient estimate. Further, we designed an analytical solution to propagate the spatial gradient fields from the low-resolution (LR) images to the HR image space and exploited these gradient fields over multiple scales with a dynamic update scheme for more accurate edge localization in the reconstruction. We also established a forward model of image formation and inverted it along with the proposed gradient guidance. The proposed SRR method allows subject motion between volumes and is able to incorporate various acquisition schemes where the LR images are acquired with arbitrary orientations and displacements, such as orthogonal and through-plane origin-shifted scans. We assessed our proposed approach on simulated data as well as on the data acquired on a Siemens 3T MRI scanner containing 45 MRI scans from 14 subjects. Our experimental results demonstrate that our approach achieved superior reconstructions compared to state-of-the-art methods, both in terms of local spatial smoothness and edge preservation, while, in parallel, at reduced, or at the same cost as scans delivered with direct HR acquisition.

摘要

在任何磁共振成像(MRI)协议中,图像分辨率、信噪比(SNR)和扫描时间之间的权衡都是不可避免的。超分辨率重建(SRR)已被证明在减轻这些因素方面是有效的,因此,已成为解决当前MRI局限性的重要方法。在这项工作中,我们基于各向异性采集方案开发了一种新颖的基于图像的MRI SRR方法,该方法利用一种新的梯度引导正则化方法,通过空间梯度估计来指导高分辨率(HR)重建。此外,我们设计了一种解析解,将空间梯度场从低分辨率(LR)图像传播到HR图像空间,并通过动态更新方案在多个尺度上利用这些梯度场,以在重建中实现更精确的边缘定位。我们还建立了图像形成的正向模型,并将其与提出的梯度引导一起进行反演。所提出的SRR方法允许在不同体积之间进行受试者运动,并且能够纳入各种采集方案,其中LR图像以任意方向和位移进行采集,例如正交和平面内原点偏移扫描。我们在模拟数据以及在西门子3T MRI扫描仪上采集的数据上评估了我们提出的方法,该数据包含来自14名受试者的45次MRI扫描。我们的实验结果表明,与现有技术方法相比,我们提出的方法在局部空间平滑度和边缘保留方面都实现了卓越的重建,同时,以与直接HR采集相同或更低的成本进行扫描。

相似文献

1
Gradient-Guided Isotropic MRI Reconstruction from Anisotropic Acquisitions.
IEEE Trans Comput Imaging. 2021;7:1240-1253. doi: 10.1109/tci.2021.3128745. Epub 2021 Nov 17.
2
Isotropic MRI Super-Resolution Reconstruction with Multi-scale Gradient Field Prior.
Med Image Comput Comput Assist Interv. 2019 Oct;11766:3-11. doi: 10.1007/978-3-030-32248-9_1. Epub 2019 Oct 10.
3
Learning a Gradient Guidance for Spatially Isotropic MRI Super-Resolution Reconstruction.
Med Image Comput Comput Assist Interv. 2020 Oct;12262:136-146. doi: 10.1007/978-3-030-59713-9_14. Epub 2020 Sep 29.
4
Super-Resolution Magnetic Resonance Imaging of the Knee Using 2-Dimensional Turbo Spin Echo Imaging.
Invest Radiol. 2020 Aug;55(8):481-493. doi: 10.1097/RLI.0000000000000676.
5
Scan-Specific Generative Neural Network for MRI Super-Resolution Reconstruction.
IEEE Trans Med Imaging. 2022 Jun;41(6):1383-1399. doi: 10.1109/TMI.2022.3142610. Epub 2022 Jun 1.
6
7
To shift or to rotate? Comparison of acquisition strategies for multi-slice super-resolution magnetic resonance imaging.
Front Neurosci. 2022 Nov 11;16:1044510. doi: 10.3389/fnins.2022.1044510. eCollection 2022.
8
MRI Super-Resolution Through Generative Degradation Learning.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12906:430-440. doi: 10.1007/978-3-030-87231-1_42. Epub 2021 Sep 21.
9
Super-Resolution Reconstruction of Diffusion-Weighted Images from Distortion Compensated Orthogonal Anisotropic Acquisitions.
Proc Workshop Math Methods Biomed Image Analysis. 2012 Jan;2012:249-254. doi: 10.1109/MMBIA.2012.6164759.

引用本文的文献

1
Cross-Modality Reference and Feature Mutual-Projection for 3D Brain MRI Image Super-Resolution.
J Imaging Inform Med. 2024 Dec;37(6):2838-2851. doi: 10.1007/s10278-024-01139-1. Epub 2024 Jun 3.
2
Scan-Specific Generative Neural Network for MRI Super-Resolution Reconstruction.
IEEE Trans Med Imaging. 2022 Jun;41(6):1383-1399. doi: 10.1109/TMI.2022.3142610. Epub 2022 Jun 1.

本文引用的文献

1
Optimizing Full 3D SPARKLING Trajectories for High-Resolution Magnetic Resonance Imaging.
IEEE Trans Med Imaging. 2022 Aug;41(8):2105-2117. doi: 10.1109/TMI.2022.3157269. Epub 2022 Aug 1.
2
MRI Super-Resolution Through Generative Degradation Learning.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12906:430-440. doi: 10.1007/978-3-030-87231-1_42. Epub 2021 Sep 21.
4
Learning a Gradient Guidance for Spatially Isotropic MRI Super-Resolution Reconstruction.
Med Image Comput Comput Assist Interv. 2020 Oct;12262:136-146. doi: 10.1007/978-3-030-59713-9_14. Epub 2020 Sep 29.
5
SLIMM: Slice localization integrated MRI monitoring.
Neuroimage. 2020 Dec;223:117280. doi: 10.1016/j.neuroimage.2020.117280. Epub 2020 Aug 24.
6
Isotropic MRI Super-Resolution Reconstruction with Multi-scale Gradient Field Prior.
Med Image Comput Comput Assist Interv. 2019 Oct;11766:3-11. doi: 10.1007/978-3-030-32248-9_1. Epub 2019 Oct 10.
7
3D variable-density SPARKLING trajectories for high-resolution T2*-weighted magnetic resonance imaging.
NMR Biomed. 2020 Sep;33(9):e4349. doi: 10.1002/nbm.4349. Epub 2020 Jul 1.
8
MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances.
J Magn Reson Imaging. 2021 May;53(5):1318-1343. doi: 10.1002/jmri.27192. Epub 2020 May 18.
9
Medical Image Imputation from Image Collections.
IEEE Trans Med Imaging. 2018 Aug 22. doi: 10.1109/TMI.2018.2866692.
10
Super-resolution musculoskeletal MRI using deep learning.
Magn Reson Med. 2018 Nov;80(5):2139-2154. doi: 10.1002/mrm.27178. Epub 2018 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验